Mining Stock Market Tendency Using GA-Based Support Vector Machines

نویسندگان

  • Lean Yu
  • Shouyang Wang
  • Kin Keung Lai
چکیده

In this study, a hybrid intelligent data mining methodology, genetic algorithm based support vector machine (GASVM) model, is proposed to explore stock market tendency. In this hybrid data mining approach, GA is used for variable selection in order to reduce the model complexity of SVM and improve the speed of SVM, and then the SVM is used to identify stock market movement direction based on the historical data. To evaluate the forecasting ability of GASVM, we compare its performance with that of conventional methods (e.g., statistical models and time series models) and neural network models. The empirical results reveal that GASVM outperforms other forecasting models, implying that the proposed approach is a promising alternative to stock market tendency exploration.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Hybrid Machine Learning System for Stock Market Forecasting

In this paper, we propose a hybrid machine learning system based on Genetic Algorithm (GA) and Support Vector Machines (SVM) for stock market prediction. A variety of indicators from the technical analysis field of study are used as input features. We also make use of the correlation between stock prices of different companies to forecast the price of a stock, making use of technical indicators...

متن کامل

Balancing Recall and Precision in Stock Market Predictors Using Support Vector Machines

Computational finance is one of the fields where machine learning and data mining have found in recent years a large application. Neverthless, there are still many open issues regarding the predictability of the stock market, and the possibility to build an automatic intelligent trader able to make forecasts on stock prices, and to develop a profitable trading strategy. In this paper, we propos...

متن کامل

Mining Biological Repetitive Sequences Using Support Vector Machines and Fuzzy SVM

Structural repetitive subsequences are most important portion of biological sequences, which play crucial roles on corresponding sequence’s fold and functionality. Biggest class of the repetitive subsequences is “Transposable Elements” which has its own sub-classes upon contexts’ structures. Many researches have been performed to criticality determine the structure and function of repetitiv...

متن کامل

Stock Market Analysis and Prediction

Stock market analysis is a widely studied problem as it offers practical applications for signal processing and predictive methods and a tangible financial reward. Creating a system that yields consistent returns is extremely challenging and is currently an open problem as stock market prices are extremely volatile and vary widely both within a given stock and comparatively amongst many stocks....

متن کامل

Improved Accuracy of PSO and DE using Normalization: an Application to Stock Price Prediction

Data Mining is being actively applied to stock market since 1980s. It has been used to predict stock prices, stock indexes, for portfolio management, trend detection and for developing recommender systems. The various algorithms which have been used for the same include ANN, SVM, ARIMA, GARCH etc. Different hybrid models have been developed by combining these algorithms with other algorithms li...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005