Hermite and Hermite-Fejér interpolation for Stieltjes polynomials

نویسنده

  • H. S. Jung
چکیده

Let wλ(x) := (1−x2)λ−1/2 and P (λ) n be the ultraspherical polynomials with respect to wλ(x). Then we denote by E (λ) n+1 the Stieltjes polynomials with respect to wλ(x) satisfying ∫ 1 −1 wλ(x)P (λ) n (x)E (λ) n+1(x)x dx { = 0, 0 ≤ m < n+ 1, = 0, m = n+ 1. In this paper, we show uniform convergence of the Hermite–Fejér interpolation polynomials Hn+1[·] and H2n+1[·] based on the zeros of the Stieltjes polynomials E (λ) n+1 and the product E (λ) n+1P (λ) n for 0 ≤ λ ≤ 1 and 0 ≤ λ ≤ 1/2, respectively. To prove these results, we prove that the Lebesgue constants of Hermite–Fejér interpolation operators for the Stieltjes polynomials E (λ) n+1 and the product E (λ) n+1P (λ) n are optimal, that is, the Lebesgue constants ‖Hn+1‖∞(0 ≤ λ ≤ 1) and ‖H2n+1‖∞(0 ≤ λ ≤ 1/2) have optimal order O(1). In the case of the Hermite–Fejér interpolation polynomials H2n+1[·] for 1/2 < λ ≤ 1, we prove weighted uniform convergence. Moreover, we give some convergence theorems of Hermite–Fejér and Hermite interpolation polynomials for 0 ≤ λ ≤ 1 in weighted Lp norms.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Convergence of Hermite and Hermite-Fejér Interpolation of Higher Order for Freud Weights

We investigate weighted Lp(0 < p <.) convergence of Hermite and Hermite– Fejér interpolation polynomials of higher order at the zeros of Freud orthogonal polynomials on the real line. Our results cover as special cases Lagrange, Hermite– Fejér and Krylov–Stayermann interpolation polynomials. © 2001 Academic Press

متن کامل

gH-differentiable of the 2th-order functions interpolating

Fuzzy Hermite interpolation of 5th degree generalizes Lagrange interpolation by fitting a polynomial to a function f that not only interpolates f at each knot but also interpolates two number of consecutive Generalized Hukuhara derivatives of f at each knot. The provided solution for the 5th degree fuzzy Hermite interpolation problem in this paper is based on cardinal basis functions linear com...

متن کامل

Orthonormal polynomials for generalized Freud-type weights and higher-order Hermite-Feje'r interpolation polynomials

Let Q : R-R be even, nonnegative and continuous, Q0 be continuous, Q040 in ð0;NÞ; and let Q00 be continuous in ð0;NÞ: Furthermore, Q satisfies further conditions. We consider a certain generalized Freud-type weight W 2 rQðxÞ 1⁄4 jxj 2r expð 2QðxÞÞ: In previous paper (J. Approx. Theory 121 (2003) 13) we studied the properties of orthonormal polynomials fPnðW 2 rQ; xÞg N n1⁄40 with the generalize...

متن کامل

Derivatives of Orthonormal Polynomials and Coefficients of Hermite-Fejér Interpolation Polynomials with Exponential-Type Weights

Let R −∞,∞ , and let Q ∈ C2 : R → 0,∞ be an even function. In this paper, we consider the exponential-type weights wρ x |x| exp −Q x , ρ > −1/2, x ∈ R, and the orthonormal polynomials pn w2 ρ;x of degree n with respect to wρ x . So, we obtain a certain differential equation of higher order with respect to pn w2 ρ;x and we estimate the higher-order derivatives of pn w2 ρ;x and the coefficients o...

متن کامل

Hermite and Hermite-fejér Interpolation of Higher Order and Associated Product Integration for Erdős Weights

Using the results on the coefficients of Hermite-Fejér interpolations in [5], we investigate convergence of Hermite and Hermite-Fejér interpolation of order m, m = 1, 2, . . . in Lp(0 < p < ∞) and associated product quadrature rules for a class of fast decaying even Erdős weights on the real line.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Math. Comput.

دوره 75  شماره 

صفحات  -

تاریخ انتشار 2006