On Constant-Depth Canonical Boolean Circuits for Computing Multilinear Functions

نویسندگان

  • Oded Goldreich
  • Avishay Tal
چکیده

We consider new complexity measures for the model of multilinear circuits with general multilinear gates introduced by Goldreich and Wigderson (ECCC, 2013). These complexity measures are related to the size of canonical constant-depth Boolean circuits, which extend the definition of canonical depth-three Boolean circuits. We obtain matching lower and upper bound on the size of canonical constant-depth Boolean circuits for almost all multilinear functions, and non-trivial lower bounds on the size of such circuits for some explicit multilinear functions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Size of Depth-Three Boolean Circuits for Computing Multilinear Functions

We propose that multi-linear functions of relatively low degree over GF(2) may be goodcandidates for obtaining exponential lower bounds on the size of constant-depth Boolean cir-cuits (computing explicit functions). Specifically, we propose to move gradually from linearfunctions to multilinear ones, and conjecture that, for any t ≥ 2, some explicit t-linear functionsF : ({0, 1}n...

متن کامل

On the Computational Power of Sigmoid versus Boolean Threshold Circuits

We examine the power of constant depth circuits with sigmoid (i.e. smooth) threshold gates for computing boolean functions. It is shown that, for depth 2, constant size circuits of this type are strictly more powerful than constant size boolean threshold circuits (i.e. circuits with boolean threshold gates). On the other hand it turns out that, for any constant depth d , polynomial size sigmoid...

متن کامل

A Comparison of the Computational Power of Sigmoid and Boolean Threshold Circuits

We examine the power of constant depth circuits with sigmoid (i.e. smooth) threshold gates for computing boolean functions. It is shown that, for depth 2, constant size circuits of this type are strictly more powerful than constant size boolean threshold circuits (i.e. circuits with linear threshold gates). On the other hand it turns out that, for any constant depth d, polynomial size sigmoid t...

متن کامل

Isomorphism Testing of Boolean Functions Computable by Constant-Depth Circuits

Given two n-variable boolean functions f and g, we study the problem of computing an ε-approximate isomorphism between them. I.e. a permutation π of the n variables such that f(x1, x2, . . . , xn) and g(xπ(1), xπ(2), . . . , xπ(n)) differ on at most an ε fraction of all boolean inputs {0, 1}. We give a randomized 2 √ n polylog(n)) algorithm that computes a 1 2polylog(n) -approximate isomorphism...

متن کامل

Efficient Key-policy Attribute-based Encryption for General Boolean Circuits from Multilinear Maps

We propose an efficient Key-policy Attribute-based Encryption (KP-ABE) scheme for general (monotone) Boolean circuits based on secret sharing and on a very particular and simple form of leveled multilinear maps, called chained multilinear maps. The number of decryption key components is substantially reduced in comparison with the scheme in [6], and the size of the multilinear map (in terms of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Electronic Colloquium on Computational Complexity (ECCC)

دوره 24  شماره 

صفحات  -

تاریخ انتشار 2017