Q-Dock: Low-resolution flexible ligand docking with pocket-specific threading restraints

نویسندگان

  • Michal Brylinski
  • Jeffrey Skolnick
چکیده

The rapidly growing number of theoretically predicted protein structures requires robust methods that can utilize low-quality receptor structures as targets for ligand docking. Typically, docking accuracy falls off dramatically when apo or modeled receptors are used in docking experiments. Low-resolution ligand docking techniques have been developed to deal with structural inaccuracies in predicted receptor models. In this spirit, we describe the development and optimization of a knowledge-based potential implemented in Q-Dock, a low-resolution flexible ligand docking approach. Self-docking experiments using crystal structures reveals satisfactory accuracy, comparable with all-atom docking. All-atom models reconstructed from Q-Dock's low-resolution models can be further refined by even a simple all-atom energy minimization. In decoy-docking against distorted receptor models with a root-mean-square deviation, RMSD, from native of approximately 3 A, Q-Dock recovers on average 15-20% more specific contacts and 25-35% more binding residues than all-atom methods. To further improve docking accuracy against low-quality protein models, we propose a pocket-specific protein-ligand interaction potential derived from weakly homologous threading holo-templates. The success rate of Q-Dock employing a pocket-specific potential is 6.3 times higher than that previously reported for the Dolores method, another low-resolution docking approach.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Q-Dock: Low-Resolution Refinement for Ligand Comparative Modeling

The success of ligand docking calculations typically depends on the quality of the receptor structure. Given improvements in protein structure prediction approaches, approximate protein models now can be routinely obtained for the majority of gene products in a given proteome. Structure-based virtual screening of large combinatorial libraries of lead candidates against theoretically modeled rec...

متن کامل

Docking multiple conformations of a flexible ligand into a protein binding site using NMR restraints.

A method is described for docking a large, flexible ligand using intra-ligand conformational restraints from exchange-transferred NOE (etNOE) data. Numerous conformations of the ligand are generated in isolation, and a subset of representative conformations is selected. A crude model of the protein-ligand complex is used as a template for overlaying the selected ligand structures, and each comp...

متن کامل

Q-DockLHM: Low-resolution refinement for ligand comparative modeling

The success of ligand docking calculations typically depends on the quality of the receptor structure. Given improvements in protein structure prediction approaches, approximate protein models now can be routinely obtained for the majority of gene products in a given proteome. Structure-based virtual screening of large combinatorial libraries of lead candidates against theoretically modeled rec...

متن کامل

Docking of small ligands to low-resolution and theoretically predicted receptor structures

We have developed a simple docking procedure that is able to utilize low-resolution models of proteins created by structure prediction algorithms such as threading or ab initio folding to predict the conformation of receptor-small ligand complexes. In our approach, using only approximate, discretized models of both molecules, we search for the steric and quasi-chemical complementarity between a...

متن کامل

FINDSITEcomb: A Threading/Structure-Based, Proteomic-Scale Virtual Ligand Screening Approach

Virtual ligand screening is an integral part of the modern drug discovery process. Traditional ligand-based, virtual screening approaches are fast but require a set of structurally diverse ligands known to bind to the target. Traditional structure-based approaches require high-resolution target protein structures and are computationally demanding. In contrast, the recently developed threading/s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of computational chemistry

دوره 29 10  شماره 

صفحات  -

تاریخ انتشار 2008