Modified ligands to FA and FB in photosystem I. Proposed chemical rescue of a [4Fe-4S] cluster with an external thiolate in alanine, glycine, and serine mutants of PsaC.

نویسندگان

  • Y S Jung
  • I R Vassiliev
  • F Qiao
  • F Yang
  • D A Bryant
  • J H Golbeck
چکیده

The FB and FA electron acceptors in Photosystem I (PS I) are [4Fe-4S] clusters ligated by cysteines provided by PsaC. In a previous study (Mehari, T., Qiao, F., Scott, M. P., Nellis, D., Zhao, J., Bryant, D., and Golbeck, J. H. (1995) J. Biol. Chem. 270, 28108-28117), we showed that when cysteines 14 and 51 were replaced with serine or alanine, the free proteins contained a S = 1/2, [4Fe-4S] cluster at the unmodified site and a mixed population of S = 1/2, [3Fe-4S] and S = 3/2, [4Fe-4S] clusters at the modified site. We show here that these mutant PsaC proteins can be rebound to P700-FX cores, resulting in fully functional PS I complexes. The low temperature EPR spectra of the C14XPsaC.PS I complexes (where X = S, A, or G) show the photoreduction of a wild-type FA cluster and a modified FB' cluster, the latter with g values of 2.115, 1.899, and 1.852 and linewidths of 110, 70, and 85 MHz. Since neither alanine nor glycine contains a suitable side group, an external thiolate provided by beta-mercaptoethanol has likely been recruited to supply the requisite ligand to the [4Fe-4S] cluster. The EPR spectrum of the C51SPsaC.PS I complex differs from that of the C51APsaC.PS I or C51GPsaC.PS I complexes by the presence of an additional set of resonances, which may be derived from the serine oxygen-ligated cluster. In all other mutant PS I complexes, a wild-type spin-coupled interaction spectrum appears when FA and FB are simultaneously reduced. Single turnover flash studies indicate approximately 50% efficient electron transfer to FA/FB in the C14SPsaC.PS I, C51SPsaC.PS I, C14GPsaC.PS I, and C51GPsaC.PS I mutants and less than 40% in the C14APsaC.PS I and C51APsaC.PS I mutants, compared with approximately 76% in the PS I core reconstructed with wild-type PsaC. These data are consistent with the measurements of the rates of cytochrome c6-NADP+ reductase activity, indicating lower rates in the alanine mutants. It is proposed that the chemical rescue of a [4Fe-4S] cluster with a recruited external thiolate at the modified site allows the mutant PsaC proteins to rebind to PS I and to function in forward electron transfer.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Strains of synechocystis sp. PCC 6803 with altered PsaC. I. Mutations incorporated in the cysteine ligands of the two [4Fe-4S] clusters FA and FB of photosystem I.

Two [4Fe-4S] clusters, FA and FB, function as terminal electron carriers in Photosystem I (PS I), a thylakoid membrane-bound protein-pigment complex. To probe the function of these two clusters in photosynthetic electron transport, site-directed mutants were created in the transformable cyanobacterium Synechocystis sp. PCC 6803. Cysteine ligands in positions 14 or 51 to FB and FA, respectively,...

متن کامل

Directed mutagenesis of an iron-sulfur protein of the photosystem I complex in the filamentous cyanobacterium Anabaena variabilis ATCC 29413.

In oxygenic photosynthetic organisms the PSI-C polypeptide, encoded by the psaC gene, provides the ligands for two [4Fe-4S] centers, FA and FB, the terminal electron acceptors in the photosystem I (PSI) complex. An insertion mutation introduced in the psaC locus of the filamentous cyanobacterium Anabaena variabilis ATCC 29413 resulted in the creation of a mutant strain, T398-1, that lacks the P...

متن کامل

The PsaC subunit of photosystem I provides an essential lysine residue for fast electron transfer to ferredoxin.

PsaC is the stromal subunit of photosystem I (PSI) which binds the two terminal electron acceptors FA and FB. This subunit resembles 2[4Fe-4S] bacterial ferredoxins but contains two additional sequences: an internal loop and a C-terminal extension. To gain new insights into the function of the internal loop, we used an in vivo degenerate oligonucleotide-directed mutagenesis approach for analysi...

متن کامل

The structure of genetically modified iron-sulfur cluster F(x) in photosystem I as determined by X-ray absorption spectroscopy.

Photosystem I (PS I) mediates light-induced electron transfer from P700 through a chlorophyll a, a quinone and a [4Fe-4S] iron-sulfur cluster F(X), located on the core subunits PsaA/B to iron-sulfur clusters F(A/B) on subunit PsaC. Structure function relations in the native and in the mutant (psaB-C565S/D566E) of the cysteine ligand of F(X) cluster were studied by X-ray absorption spectroscopy ...

متن کامل

Mutational analysis of the structure and biogenesis of the photosystem I reaction center in the cyanobacterium Synechocystis sp. PCC 6803.

We have utilized the unicellular cyanobacterium Synechocystis sp. PCC 6803 to incorporate site-directed amino acid substitutions into the photosystem I (PSI) reactioncenter protein PsaB. A cysteine residue (position 565 of PsaB) proposed to serve as a ligand to the [4Fe-4S] center Fx was changed to serine, histidine, and aspartate. These three mutants--C565S, C565H, and C565D--all exhibited gre...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 271 49  شماره 

صفحات  -

تاریخ انتشار 1996