Mechanics of a mosquito bite with applications to microneedle design.
نویسندگان
چکیده
The mechanics of a fascicle insertion into the skin by a mosquito of the type aedes aegypti has been studied experimentally using high-speed video (HSV) imaging, and analytically using a mathematical model. The fascicle is a polymeric microneedle composed of a ductile material, chitin. It has been proposed that the mosquito applies a non-conservative follower force component in addition to the Euler compressive load in order to prevent buckling and penetrate the skin. In addition, the protective sheath surrounding the fascicle (labium) provides lateral support during insertion. The mechanics model presented approximates the fascicle as a slender column supported on an elastic foundation (labium) subjected to non-conservative (Beck) and conservative Euler loads simultaneously at the end. Results show that the lateral support of the fascicle provided by the labium is essential for successful penetration by increasing the critical buckling load by a factor of 5. The non-conservative follower force application increases the buckling load by an additional 20% and may or may not be necessary for successful penetration. Experimental results showing the importance of the labium have been cited to validate the model predictions, in addition to the video observations presented in this work. This understanding may be useful in designing painless needle insertion systems as opposed to miniaturized hypodermic needles.
منابع مشابه
Fabrication of polymeric microneedle arrays containing Amphotericin-B for transdermal drug delivery
Background and Aim: Drug delivery through the microneedle array has been considered as an easy and non-invasive method in recent years. The purpose of this study was to design and construct an array of biodegradable polymeric microneedles containing Amphotericin-B to introduce this system and its use in the treatment of cutaneous lesions caused by Leishmania major parasite inoculation as a mode...
متن کاملFabrication of conical microneedles array using photolithography
Background and Aim: Microneedle technology has led to huge changes in the field of drug delivery medicine. Using microneedles, the drug can be injected locally, painlessly, and in very low and controlled doses with high precision. Local drug delivery through the skin with microneedles has many advantages over other methods of drug delivery. In this method, the drug does not enter the gastrointe...
متن کاملSimulation and Analysis of Microneedle for Drug Delivery based on Structural and Fluid Flow Mechanics
MEMS (Micro Electro Mechanical System) design systems are used for the development of microneedles, which are used for drug delivery. The drug delivery through micronnedle is painless which is not in case of transdermal needles. In this paper the simulation and analysis of microneedle is presented. The typical structure of a microneedle is simulated for studies of the structural behavior of mic...
متن کاملSalivary Biomarkers in the Control of Mosquito-Borne Diseases
Vector control remains the most effective measure to prevent the transmission of mosquito-borne diseases. However, the classical entomo-parasitological methods used to evaluate the human exposure to mosquito bites and the effectiveness of control strategies are indirect, labor intensive, and lack sensitivity in low exposure/transmission areas. Therefore, they are limited in their accuracy and w...
متن کاملStereochemical effects in an insect repellent.
Racemic 1-[3-cyclohexen-1-ylcarbonyl]-2-methylpiperidine repels blood-feeding arthropods such as mosquitoes, chiggers, and ticks. The compound contains two asymmetric carbon atoms and the racemate consists of four stereoisomers. Quantitative mosquito bioassays using Aedes aegypti (L.) showed that (1S,2'S) and (1R,2'S) configurations were 2.8-3.1 and 1.6-1.8 times more effective, respectively, t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Bioinspiration & biomimetics
دوره 3 4 شماره
صفحات -
تاریخ انتشار 2008