An Improved Chen-ricci Inequality
نویسنده
چکیده
Oprea proves that Ric(X) ≤ n−1 4 (c + n||H||) improving the Chen-Ricci inequality for Lagrangian submanifolds in complex space forms by using an optimization technique. In this article, we give an algebraic proof of the inequality and completely classify Lagrangian submanifolds in complex space forms satisfying the equality, which is not discussed in Oprea’s paper.
منابع مشابه
Improved Chen-ricci Inequality for Lagrangian Submanifolds in Quaternion Space Forms
In this article, we obtain an improved Chen-Ricci inequality and completely classify Lagrangian submanifolds in quaternion space forms satisfying the equality. Our result is an affirmative answer to Problem 4.6 in [12].
متن کاملThe Stability Inequality for Ricci-flat Cones
In this article, we thoroughly investigate the stability inequality for Ricci-flat cones. Perhaps most importantly, we prove that the Ricci-flat cone over CP 2 is stable, showing that the first stable non-flat Ricci-flat cone occurs in the smallest possible dimension. On the other hand, we prove that many other examples of Ricci-flat cones over 4-manifolds are unstable, and that Ricci-flat cone...
متن کاملFe b 20 09 Space of Ricci flows ( I )
In this paper, we study the moduli spaces of noncollapsed Ricci flow solutions with bounded energy and scalar curvature. We show a weak compactness theorem for such moduli spaces and apply it to study isoperimetric constant control, Kähler Ricci flow and moduli space of gradient shrinking solitons.
متن کاملMonotonicity and K ¨ Ahler-ricci Flow
§0 Introduction. In this paper, we shall give a geometric account of the linear trace Li-Yau-Hamilton (which will be abbreviated as LYH) inequality for the Kähler-Ricci flow proved by LuenFai Tam and the author in [NT1]. To put the result, especially the Liouville theorem for the plurisubharmonic functions, into the right perspective we would also describe some dualities existed in both linear ...
متن کاملOn an alternate proof of Hamilton’s matrix Harnack inequality for the Ricci flow
In [LY] a differential Harnack inequality was proved for solutions to the heat equation on a Riemannian manifold. Inspired by this result, Hamilton first proved trace and matrix Harnack inequalities for the Ricci flow on compact surfaces [H0] and then vastly generalized his own result to all higher dimensions for complete solutions of the Ricci flow with nonnegative curvature operator [ H2]. So...
متن کامل