Differential roles of GSK-3β during myocardial ischemia and ischemia/reperfusion.
نویسندگان
چکیده
RATIONALE Inhibition of glycogen synthase kinase-3 (GSK-3) protects the heart during ischemia/reperfusion (I/R), yet the underlying mechanisms of cardioprotection afforded by beta isoform-specific inhibition GSK-3 remain to be elucidated. OBJECTIVE We studied the molecular mechanism mediating the effect of GSK-3β activation/inhibition upon myocardial injury during prolonged ischemia and I/R. METHODS AND RESULTS Beta isoform-specific inhibition of GSK-3 by dominant negative GSK-3β in transgenic mice (Tg-DnGSK-3β) or in heterozygous GSK-3β knock-out mice (GSK-3β+/-) significantly increased, whereas activation of GSK-3β in constitutively active GSK-3β knock-in mice (βKI) significantly decreased, myocardial ischemic injury after prolonged ischemia. In contrast, inhibition of GSK-3β in Tg-DnGSK-3β or GSK-3β+/- significantly reduced, while activation of GSK-3β in βKI significantly enhanced, myocardial I/R injury. Inhibition of GSK-3β stimulated mTOR signaling and inhibited autophagy through a rapamycin-sensitive (mTOR dependent) mechanism. Rapamycin enhanced autophagy and, at the same time, abolished the effects of GSK-3β inhibition on both prolonged ischemic injury and I/R injury. Importantly, the influence of rapamycin over the effects of GSK-3β inhibition on myocardial injury was reversed by inhibition of autophagy. CONCLUSIONS Our results suggest that beta isoform-specific inhibition of GSK-3 exacerbates ischemic injury but protects against I/R injury by modulating mTOR and autophagy.
منابع مشابه
Roles of Endoplasmic Reticulum Stress in NECA-Induced Cardioprotection against Ischemia/Reperfusion Injury
Objective This study aimed to investigate whether the nonselective A2 adenosine receptor agonist NECA induces cardioprotection against myocardial ischemia/reperfusion (I/R) injury via glycogen synthase kinase 3β (GSK-3β) and the mitochondrial permeability transition pore (mPTP) through inhibition of endoplasmic reticulum stress (ERS). Methods and Results H9c2 cells were exposed to H2O2 for 20...
متن کاملGlaucocalyxin A Ameliorates Myocardial Ischemia-Reperfusion Injury in Mice by Suppression of Microvascular Thrombosis
BACKGROUND The aim of this study was to evaluate the cardio-protective roles of glaucocalyxin A (GLA) in myocardial ischemia-reperfusion injury and to explore the underlying mechanism. MATERIAL AND METHODS Myocardial ischemia-reperfusion in wild-type C57BL/6J mice was induced by transient ligation of the left anterior descending artery. GLA or vehicle (solvent) was administrated intraperitoneal...
متن کاملDiabetic Inhibition of Preconditioning- and Postconditioning-Mediated Myocardial Protection against Ischemia/Reperfusion Injury
Ischemic preconditioning (IPC) or postconditioning (Ipost) is proved to efficiently prevent ischemia/reperfusion injuries. Mortality of diabetic patients with acute myocardial infarction was found to be 2-6 folds higher than that of non-diabetic patients with same myocardial infarction, which may be in part due to diabetic inhibition of IPC- and Ipost-mediated protective mechanisms. Both IPC- a...
متن کاملDiallyl trisulfide exerts cardioprotection against myocardial ischemia-reperfusion injury in diabetic state, role of AMPK-mediated AKT/GSK-3β/HIF-1α activation
Diallyl trisulfide (DATS), the major active ingredient in garlic, has been reported to confer cardioprotective effects. However, its effect on myocardial ischemia-reperfusion (MI/R) injury in diabetic state and the underlying mechanism are still unknown. We hypothesize that DATS reduces MI/R injury in diabetic state via AMPK-mediated AKT/GSK-3β/HIF-1α activation. Streptozotocin-induced diabetic...
متن کاملAtorvastatin Protects Myocardium Against Ischemia-Reperfusion Injury Through Inhibiting miR-199a-5p.
OBJECTIVE This study aimed to evaluate the protective effects of atorvastatin against myocardial ischemia/reperfusion (I/R) injury in cardiomyocytes and its possible underlying mechanism. METHOD Direct cytotoxic effect of OGD/R on cardiomyocytes with and without atorvastatin pretreatment was evaluated. Effects of atorvastatin on expression of GSK-3β and miR-199a-5p were determined using RT-PC...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Circulation research
دوره 109 5 شماره
صفحات -
تاریخ انتشار 2011