Nucleotide Binding Preference of the Monofunctional Platinum Anticancer-Agent Phenanthriplatin.
نویسندگان
چکیده
The monofunctional platinum anticancer agent phenanthriplatin generates covalent adducts with the purine bases guanine and adenine. Preferential nucleotide binding was investigated by using a polymerase stop assay and linear DNA amplification with a 163-base pair DNA double helix. Similarly to cisplatin, phenanthriplatin forms the majority of adducts at guanosine residues, but significant differences in both the number and position of platination sites emerge when comparing results for the two complexes. Notably, the monofunctional complex generates a greater number of polymerase-halting lesions at adenosine residues than does cisplatin. Studies with 9-methyladenine reveal that, under abiological conditions, phenanthriplatin binds to the N(1) or N(7) position of 9-methyladenine in approximately equimolar amounts. By contrast, comparable reactions with 9-methylguanine afforded only the N(7) -bound species. Both of the 9-methyladenine linkage isomers (N(1) and N(7) ) exist as two diastereomeric species, arising from hindered rotation of the aromatic ligands about their respective platinum-nitrogen bonds. Eyring analysis of rate constants extracted from variable-temperature NMR spectroscopic data revealed that the activation energies for ligand rotation in the N(1) -bound platinum complex and the N(7) -linkage isomers are comparable. Finally, a kinetic analysis indicated that phenanthriplatin reacts more rapidly, by a factor of eight, with 9-methylguanine than with 9-methyladenine, suggesting that the distribution of lesions formed on double-stranded DNA is kinetically controlled. In addition, implications for the potent anticancer activity of phenanthriplatin are discussed herein.
منابع مشابه
Phenanthriplatin, a monofunctional DNA-binding platinum anticancer drug candidate with unusual potency and cellular activity profile.
Monofunctional platinum(II) complexes of general formula cis-[Pt(NH(3))(2)(N-heterocycle)Cl]Cl bind DNA at a single site, inducing little distortion in the double helix. Despite this behavior, these compounds display significant antitumor properties, with a different spectrum of activity than that of classic bifunctional cross-linking agents like cisplatin. To discover the most potent monofunct...
متن کاملEffects of monofunctional platinum agents on bacterial growth: a retrospective study.
The effect of the novel and potent monofunctional platinum(II) agent phenanthriplatin on Escherichia coli and bacteriophage λ lysogens is reported. E. coli filamentation was observed by light microscopy when cells were grown in the presence of phenanthriplatin, cis-[Pt(NH3)2(Am)Cl](+) where Am is phenanthridine. Treatment of lysogenic bacteria with this compound resulted in lysis and the produc...
متن کاملThe Chiral Potential of Phenanthriplatin and Its Influence on Guanine Binding
The monofunctional platinum complex cis-[Pt(NH3)2Cl(Am)](+), also known as phenanthriplatin, where Am is the N-heterocyclic base phenanthridine, has promising anticancer activity. Unlike bifunctional compounds such as cisplatin, phenanthriplatin can form only one covalent bond to DNA. Another distinguishing feature is that phenanthriplatin is chiral. Rotation about the Pt-N bond of the phenanth...
متن کاملAnti-cancer characteristics and ototoxicity of platinum(II) amine complexes with only one leaving ligand
Unlike cisplatin, which forms bifunctional DNA adducts, monofunctional platinum(II) complexes bind only one strand of DNA and might target cancer without causing auditory side-effects associated with cisplatin treatment. We synthesized the monofunctional triamine-ligated platinum(II) complexes, Pt(diethylenetriamine)Cl, [Pt(dien)Cl]+, and Pt(N,N-diethyldiethylenetriamine)Cl, [Pt(Et2dien)Cl]+, a...
متن کاملUnderstanding and improving platinum anticancer drugs--phenanthriplatin.
Approximately half of all patients who receive anticancer chemotherapy are treated with a platinum drug. Despite the widespread use of these drugs, the only cure that can be claimed is that of testicular cancer following cisplatin treatment. This article reviews some of our recent work on phenanthriplatin, a cisplatin derivative in which a chloride ion is replaced by phenanthridine, and on one ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Chemistry
دوره 22 22 شماره
صفحات -
تاریخ انتشار 2016