A numerical model of the renal distal tubule.

نویسندگان

  • Hangil Chang
  • Toshiro Fujita
چکیده

A numerical model of the rat distal tubule was developed to simulate water and solute transport in this nephron segment. This model incorporates the following: 1) Na-Cl cotransporter, K-Cl cotransporter, Na channel, K channel, and Cl channel in the luminal membrane; 2) Na-K-ATPase, K channel, and Cl channel in the basolateral membrane; and 3) conductances for Na, K, and Cl in the paracellular pathway. Transport rates were calculated using kinetic equations. Axial heterogeneity was represented by partitioning the model into two subsegments with different sets of model parameters. Model equations derived from the principles of mass conservation and electrical neutrality were solved numerically. Values of the model parameters were adjusted to minimize a penalty function that was devised to quantify the difference between model predictions and experimental results. The developed model could simulate the water and solute transport of the distal tubule in the normal state, as well as in conditions including thiazide or amiloride application and various levels of sodium load and tubular flow rate.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Microdosimetry model of kidney for nephrotoxicity due to internal radiation therapy

Introduction: We describe a nephron-based dosimetry model for renal toxicity for radiopharmaceutical therapy suited to the nonuniform activity distribution of radiopharmaceutical. In radiopharmaceutical therapy, renal toxicity is observed while whole-kidney and renal cortex absorbed dose values are below toxicity thresholds established by external beam and targeted radiope ptid...

متن کامل

AFLUID June 45/6

Chang, Hangil, and Toshiro Fujita. A numerical model of the renal distal tubule. Am. J. Physiol. 276 (Renal Physiol. 45): F931–F951, 1999.—A numerical model of the rat distal tubule was developed to simulate water and solute transport in this nephron segment. This model incorporates the following: 1) Na-Cl cotransporter, K-Cl cotransporter, Na channel, K channel, and Cl channel in the luminal m...

متن کامل

A numerical model of acid-base transport in rat distal tubule.

The purpose of this study is to develop a numerical model that simulates acid-base transport in rat distal tubule. We have previously reported a model that deals with transport of Na(+), K(+), Cl(-), and water in this nephron segment (Chang H and Fujita T. Am J Physiol Renal Physiol 276: F931-F951, 1999). In this study, we extend our previous model by incorporating buffer systems, new cell type...

متن کامل

An Efficient Numerical Method and Parametric Study for Electrolyte Transport in the Renal Medulla

Mathematical models of the mamalian urine concentrating mechanism consist of a large system of coupled, nonlinear and stiff equations. An efficient numerical orthogonal collocation method was employed to solve the steady-state formulation of urine concentrating mechanism. This method was used to solve the stiff and high order equations of electrolyte transport in a central core, single nephron ...

متن کامل

The Effect of Nifedipine and Verapamil on Kidney Histology Rat

Purpose: The aim of this study was to evaluate the effect of verapamil and nifidipine on diabetic kidney in rats. Materials and Methods: In this experimental study, 6 groups of rats were studied, group I; intact (sham) group II; diabetic (control), group III and IV; diabetic treated with verapamil or nifedepine group V and VI normal rat which recieved verapamil or nifedipine. Diabetic rats (co...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • American journal of physiology. Renal physiology

دوره 276 6  شماره 

صفحات  -

تاریخ انتشار 1999