The S. pombe mitotic regulator Cut12 promotes spindle pole body activation and integration into the nuclear envelope
نویسندگان
چکیده
The fission yeast spindle pole body (SPB) comprises a cytoplasmic structure that is separated from an ill-defined nuclear component by the nuclear envelope. Upon mitotic commitment, the nuclear envelope separating these domains disperses as the two SPBs integrate into a hole that forms in the nuclear envelope. The SPB component Cut12 is linked to cell cycle control, as dominant cut12.s11 mutations suppress the mitotic commitment defect of cdc25.22 cells and elevated Cdc25 levels suppress the monopolar spindle phenotype of cut12.1 loss of function mutations. We show that the cut12.1 monopolar phenotype arises from a failure to activate and integrate the new SPB into the nuclear envelope. The activation of the old SPB was frequently delayed, and its integration into the nuclear envelope was defective, resulting in leakage of the nucleoplasm into the cytoplasm through large gaps in the nuclear envelope. We propose that these activation/integration defects arise from a local deficiency in mitosis-promoting factor activation at the new SPB.
منابع مشابه
The KASH protein Kms2 coordinates mitotic remodeling of the spindle pole body.
Defects in the biogenesis of the spindle pole body (SPB), the yeast centrosome equivalent, can lead to monopolar spindles and mitotic catastrophe. The KASH domain protein Kms2 and the SUN domain protein Sad1 colocalize within the nuclear envelope at the site of SPB attachment during interphase and at the spindle poles during mitosis in Schizosaccharomyces pombe. We show that Kms2 interacts with...
متن کاملThe spindle pole body plays a key role in controlling mitotic commitment in the fission yeast Schizosaccharomyces pombe.
Commitment to mitosis is regulated by a conserved protein kinase complex called MPF (mitosis-promoting factor). MPF activation triggers a positive-feedback loop that further promotes the activity of its activating phosphatase Cdc25 and is assumed to down-regulate the MPF-inhibitory kinase Wee1. Four protein kinases contribute to this amplification loop: MPF itself, Polo kinase, MAPK (mitogen-ac...
متن کاملDialogue between centrosomal entrance and exit scaffold pathways regulates mitotic commitment
The fission yeast scaffold molecule Sid4 anchors the septum initiation network to the spindle pole body (SPB, centrosome equivalent) to control mitotic exit events. A second SPB-associated scaffold, Cut12, promotes SPB-associated Cdk1-cyclin B to drive mitotic commitment. Signals emanating from each scaffold have been assumed to operate independently to promote two distinct outcomes. We now fin...
متن کاملNuclear shape, growth and integrity in the closed mitosis of fission yeast depend on the Ran-GTPase system, the spindle pole body and the endoplasmic reticulum.
The double lipid bilayer of the nuclear envelope (NE) remains intact during closed mitosis. In the fission yeast Schizosaccharomyces pombe, the intranuclear mitotic spindle has envelope-embedded spindle pole bodies (SPB) at its ends. As the spindle elongates and the nucleus divides symmetrically, nuclear volume remains constant but nuclear area rapidly increases by 26%. When Ran-GTPase function...
متن کاملRole of gamma-tubulin in mitosis-specific microtubule nucleation from the Schizosaccharomyces pombe spindle pole body.
The ability of the Schizosacchromyces pombe spindle pole body to nucleate microtubules is activated at the onset of mitosis for forming a mitotic spindle, but it is inactivated during interphase. We have previously developed an in vitro assay for studying the molecular mechanism of spindle pole body activation using permeabilized interphase S. pombe cells and Xenopus mitotic extracts. We have s...
متن کامل