Geometric Properties of Composition Operators Belonging to Schatten Classes

نویسنده

  • YONGSHENG ZHU
چکیده

We investigate the connection between the geometry of the image domain of an analytic function mapping the unit disk into itself and the membership of the composition operator induced by this function in the Schatten classes. The purpose is to provide solutions to Lotto’s conjectures and show a new compact composition operator which is not in any of the Schatten classes. 2000 Mathematics Subject Classification. 47B10, 47B33, 47B38, 30H05, 46E22.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Composition operators acting on weighted Hilbert spaces of analytic functions

In this paper, we considered composition operators on weighted Hilbert spaces of analytic functions and  observed that a formula for the  essential norm, gives a Hilbert-Schmidt characterization and characterizes the membership in Schatten-class for these operators. Also, closed range composition operators  are investigated.

متن کامل

Composition operators and natural metrics in meromorphic function classes $Q_p$

‎In this paper‎, ‎we investigate some results on natural metrics on the $mu$-normal functions and meromorphic $Q_p$-classes‎. ‎Also‎, ‎these classes are shown to be complete metric spaces with respect to the corresponding metrics‎. ‎Moreover‎, ‎compact composition operators $C_phi$ and Lipschitz continuous operators acting from $mu$-normal functions to the meromorphic $Q_p$-classes are characte...

متن کامل

Schur multiplier projections on the von Neumann-Schatten classes

For 1 ≤ p < ∞ let Cp denote the usual von Neumann-Schatten ideal of compact operators on 2. The standard basis of Cp is a conditional one and so it is of interest to be able to identify the sets of coordinates for which the corresponding projection is bounded. In this paper we survey and extend the known classes of bounded projections of this type. In particular we show that some recent results...

متن کامل

Modulation Spaces as Symbol Classes for Pseudodifferential Operators

We investigate the Weyl calculus of pseudodifferential operators with the methods of time-frequency analysis. As symbol classes we use the modulation spaces, which are the function spaces associated to the short-time Fourier transform and the Wigner distribution. We investigate the boundedness and Schatten-class properties of pseudodifferential operators, and furthermore we study their mapping ...

متن کامل

‎On the two-wavelet localization operators on homogeneous spaces with relatively invariant measures

In ‎the present ‎paper, ‎we ‎introduce the ‎two-wavelet ‎localization ‎operator ‎for ‎the square ‎integrable ‎representation ‎of a‎ ‎homogeneous space‎ with respect to a relatively invariant measure. ‎We show that it is a bounded linear operator. We investigate ‎some ‎properties ‎of the ‎two-wavelet ‎localization ‎operator ‎and ‎show ‎that ‎it ‎is a‎ ‎compact ‎operator ‎and is ‎contained ‎in‎ a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001