Efficient Deep Aesthetic Image Classification using Connected Local and Global Features
نویسندگان
چکیده
In this paper we investigate the image aesthetics classification problem, aka, automatically classifying an image into low or high aesthetic quality, which is quite a challenging problem beyond image recognition. Deep convolutional neural network (DCNN) methods have recently shown promising results for image aesthetics assessment. Currently, a powerful inception module is proposed which shows very high performance in object classification. However, the inception module has not been taken into consideration for the image aesthetics assessment problem. In this paper, we propose a novel DCNN structure codenamed ILGNet for image aesthetics classification, which introduces the Inception module and connects intermediate Local layers to the Global layer for the output. Besides, we use a pre-trained image classification CNN called GoogLeNet on the ImageNet dataset and fine tune our connected local and global layer on the large scale aesthetics assessment AVA dataset [1]. The experimental results show that the proposed ILGNet outperforms the state of the art results in image aesthetics assessment in the AVA benchmark.
منابع مشابه
A Novel Method for Content Base Image Retrieval Using Combination of Local and Global Features
Content-based image retrieval (CBIR) has been an active research topic in the last decade. In this paper we proposed an image retrieval method using global and local features. Firstly, for local features extraction, SURF algorithm produces a set of interest points for each image and a set of 64-dimensional descriptors for each interest points and then to use Bag of Visual Words model, a cluster...
متن کاملA Novel Method for Content Base Image Retrieval Using Combination of Local and Global Features
Content-based image retrieval (CBIR) has been an active research topic in the last decade. In this paper we proposed an image retrieval method using global and local features. Firstly, for local features extraction, SURF algorithm produces a set of interest points for each image and a set of 64-dimensional descriptors for each interest points and then to use Bag of Visual Words model, a cluster...
متن کاملAutomatic Face Recognition via Local Directional Patterns
Automatic facial recognition has many potential applications in different areas of humancomputer interaction. However, they are not yet fully realized due to the lack of an effectivefacial feature descriptor. In this paper, we present a new appearance based feature descriptor,the local directional pattern (LDP), to represent facial geometry and analyze its performance inrecognition. An LDP feat...
متن کاملAggregating Deep Convolutional Features for Image Retrieval
Several recent works have shown that image descriptors produced by deep convolutional neural networks provide state-of-the-art performance for image classification and retrieval problems. It has also been shown that the activations from the convolutional layers can be interpreted as local features describing particular image regions. These local features can be aggregated using aggregation appr...
متن کاملA Deep-Local-Global Feature Fusion Framework for High Spatial Resolution Imagery Scene Classification
High spatial resolution (HSR) imagery scene classification has recently attracted increased attention. The bag-of-visual-words (BoVW) model is an effective method for scene classification. However, it can only extract handcrafted features, and it disregards the spatial layout information, whereas deep learning can automatically mine the intrinsic features as well as preserve the spatial locatio...
متن کامل