BK channels: multiple sensors, one activation gate
نویسندگان
چکیده
Ion transport across cell membranes is essential to cell communication and signaling. Passive ion transport is mediated by ion channels, membrane proteins that create ion conducting pores across cell membrane to allow ion flux down electrochemical gradient. Under physiological conditions, majority of ion channel pores are not constitutively open. Instead, structural region(s) within these pores breaks the continuity of the aqueous ion pathway, thereby serves as activation gate(s) to control ions flow in and out. To achieve spatially and temporally regulated ion flux in cells, many ion channels have evolved sensors to detect various environmental stimuli or the metabolic states of the cell and trigger global conformational changes, thereby dynamically operate the opening and closing of their activation gate. The sensors of ion channels can be broadly categorized as chemical sensors and physical sensors to respond to chemical (such as neural transmitters, nucleotides and ions) and physical (such as voltage, mechanical force and temperature) signals, respectively. With the rapidly growing structural and functional information of different types of ion channels, it is now critical to understand how ion channel sensors dynamically control their gates at molecular and atomic level. The voltage and Ca(2+) activated BK channels, a K(+) channel with an electrical sensor and multiple chemical sensors, provide a unique model system for us to understand how physical and chemical energy synergistically operate its activation gate.
منابع مشابه
Deletion of cytosolic gating ring decreases gate and voltage sensor coupling in BK channels
Large conductance Ca2+-activated K+ channels (BK channels) gate open in response to both membrane voltage and intracellular Ca2+ The channel is formed by a central pore-gate domain (PGD), which spans the membrane, plus transmembrane voltage sensors and a cytoplasmic gating ring that acts as a Ca2+ sensor. How these voltage and Ca2+ sensors influence the common activation gate, and interact with...
متن کاملTransduction of voltage and Ca2+ signals by Slo1 BK channels.
Large-conductance Ca2+ -and voltage-gated K+ channels are activated by an increase in intracellular Ca2+ concentration and/or depolarization. The channel activation mechanism is well described by an allosteric model encompassing the gate, voltage sensors, and Ca2+ sensors, and the model is an excellent framework to understand the influences of auxiliary β and γ subunits and regulatory factors s...
متن کاملClosed state-coupled C-type inactivation in BK channels.
Ion channels regulate ion flow by opening and closing their pore gates. K(+) channels commonly possess two pore gates, one at the intracellular end for fast channel activation/deactivation and the other at the selectivity filter for slow C-type inactivation/recovery. The large-conductance calcium-activated potassium (BK) channel lacks a classic intracellular bundle-crossing activation gate and ...
متن کاملBinding and Channel Opening in Large Conductance (BK) Potassium Channels
To determine how intracellular Ca 2 ! and membrane voltage regulate the gating of large conductance Ca 2 ! -activated K ! (BK) channels, we examined the steady-state and kinetic properties of mSlo1 ionic and gating currents in the presence and absence of Ca 2 ! over a wide range of voltage. The activation of unliganded mSlo1 channels can be accounted for by allosteric coupling between voltage s...
متن کاملTransduction of Voltage and Ca Signals by Slo1 BK Channels
Large-conductance Ca and voltage-gated K channels are activated by an increase in intracellular Ca concentration and/or depolarization. The channel activation mechanism is well described by an allosteric model encompassing the gate, voltage sensors, and Ca sensors, and the model is an excellent framework to understand the influences of auxiliary and subunits and regulatory factors such as Mg . ...
متن کامل