Another Construction of Complete-simple Distributive Lattices

نویسندگان

  • G. GRÄTZER
  • E. T. SCHMIDT
چکیده

It is well known that the only simple distributive lattice is the twoelement chain. In an earlier paper, we introduced the concept of a completesimple lattice, and proved the existence of infinite complete-simple distributive lattices. In this paper we provide a new proof which is easier to visualize.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Distributive Lattices of λ-simple Semirings

In this paper, we study the decomposition of semirings with a semilattice additive reduct. For, we introduce the notion of principal left $k$-radicals $Lambda(a)={x in S | a stackrel{l}{longrightarrow^{infty}} x}$ induced by the transitive closure $stackrel{l}{longrightarrow^{infty}}$ of the relation $stackrel{l}{longrightarrow}$ which induce the equivalence relation $lambda$. Again non-transit...

متن کامل

“ Complete - Simple ” Distributive Lattices

It is well known that the only simple distributive lattice is the twoelement chain. We can generalize the concept of a simple lattice to complete lattices as follows: a complete lattice is complete-simple if it has only the two trivial complete congruences. In this paper we show the existence of infinite complete-simple distributive lattices. “COMPLETE-SIMPLE” DISTRIBUTIVE LATTICES G. GRÄTZER A...

متن کامل

A Fibonacci Sequence of Distributive Lattices

In this paper we describe an order-theoretic realization of the Fibonacci numbers 1, 2, 3, 5, 8, 13, . .. and of the Bisection Lucas numbers 3, 7, 18, 47, 123, .. . . The Bisection Lucas numbers are part of the Lucas sequence and are obtained from the Lucas numbers 2, 1, 3, 4, 7, 11, ... by deleting 2, 1, 4, and then every second number after that. We represent the Fibonacci numbers and the Bis...

متن کامل

Distributive lattices with strong endomorphism kernel property as direct sums

Unbounded distributive lattices which have strong endomorphism kernel property (SEKP) introduced by Blyth and Silva in [3] were fully characterized in [11] using Priestley duality (see Theorem  2.8}). We shall determine the structure of special elements (which are introduced after  Theorem 2.8 under the name strong elements) and show that these lattices can be considered as a direct product of ...

متن کامل

Distributive Lattices with a given Skeleton

We present a construction of finite distributive lattices with a given skeleton. In the case of an H-irreducible skeleton K the construction provides all finite distributive lattices based on K, in particular the minimal one.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1993