Conditioning lesions enhance axonal regeneration of descending brain neurons in spinal-cord-transected larval lamprey.
نویسندگان
چکیده
In larval lamprey, with increasing recovery times after a transection of the rostral spinal cord, there is a gradual recovery of locomotor behavior, and descending brain neurons regenerate their axons for progressively greater distances below the transection site. In the present study, spinal cord "conditioning lesions" (i.e., transections) were performed in the spinal cord at 30% body length (BL; normalized distance from the head) or 50% BL. After various "lesion delay times" (D), a more proximal spinal cord "test lesion" (i.e., transection) was performed at 10% BL, and then, after various recovery times (R), horseradish peroxidase was applied to the spinal cord at 20% BL to determine the extent of axonal regeneration of descending brain neurons. Conditioning lesions at 30% BL, lesion delay times of 2 weeks, and recovery times of 4 weeks (D-R = 2-4 group) resulted in a significant enhancement of axonal regeneration for the total numbers of descending brain neurons as well as neurons in certain brain cell groups compared to control animals without conditioning lesions. Experiments with hemiconditioning lesions, which reduce interanimal variability, confirmed that conditioning lesions do significantly enhance axonal regeneration and indicate that axotomy rather than diffusible factors released at the injury site is primarily involved in this enhancement. Results from the present study suggest that conditioning lesions "prime" descending brain neurons via cell body responses and enhance subsequent axonal regeneration, probably by reducing the initial delay and/or increasing the initial rate of axonal outgrowth.
منابع مشابه
Inhibitory descending rhombencephalic projections in larval sea lamprey.
Lampreys are jawless vertebrates, the most basal group of extant vertebrates. This phylogenetic position makes them invaluable models in comparative studies of the vertebrate central nervous system. Lampreys have been used as vertebrate models to study the neuronal circuits underlying locomotion control and axonal regeneration after spinal cord injury. Inhibitory inputs are key elements in the ...
متن کاملComplete spinal cord injury and brain dissection protocol for subsequent wholemount in situ hybridization in larval sea lamprey.
After a complete spinal cord injury, sea lampreys at first are paralyzed below the level of transection. However, they recover locomotion after several weeks, and this is accompanied by short distance regeneration (a few mm) of propriospinal axons and spinal-projecting axons from the brainstem. Among the 36 large identifiable spinal-projecting neurons, some are good regenerators and others are ...
متن کاملDisruption of left-right reciprocal coupling in the spinal cord of larval lamprey abolishes brain-initiated locomotor activity.
In this study, contributions of left-right reciprocal coupling mediated by commissural interneurons in spinal locomotor networks to rhythmogenesis were examined in larval lamprey that had longitudinal midline lesions in the rostral spinal cord [8 --> 30% body length (BL), relative distance from the head] or caudal spinal cord (30 --> 50% BL). Motor activity was initiated from brain locomotor co...
متن کاملSpinobulbar neurons in lamprey: cellular properties and synaptic interactions.
An in vitro preparation of the nervous system of the lamprey, a lower vertebrate, was used to characterize the properties of spinal neurons with axons projecting to the brain stem [i.e., spinobulbar (SB) neurons)]. To identify SB neurons, extracellular electrodes on each side of the spinal cord near the obex recorded the axonal spikes of neurons impaled with sharp intracellular microelectrodes ...
متن کاملDelayed death of identified reticulospinal neurons after spinal cord injury in lampreys.
There is controversy about whether axotomized neurons undergo death or only severe atrophy after spinal cord injury (SCI) in mammals. Lampreys recover from complete spinal transection, but only about half of the severed spinal-projecting axons regenerate through the site of injury. The fates of the unregenerated neurons remain unknown, and until now death of axotomized spinal-projecting neurons...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of comparative neurology
دوره 478 4 شماره
صفحات -
تاریخ انتشار 2004