Generalized Variational Inequalities for Upper Hemicontinuous and Demi Operators with Applications to Fixed Point Theorems in Hilbert Spaces
نویسندگان
چکیده
Existence theorems of generalized variational inequalities and generalized complementarity problems are obtained in topological vector spaces for demi operators which are upper hemicontinuous along line segments in a convex set X . Fixed point theorems are also given in Hilbert spaces for set-valued operators T which are upper hemicontinuous along line segments in X such that I − T are demi operators.
منابع مشابه
Strong convergence of variational inequality problem Over the set of common fixed points of a family of demi-contractive mappings
In this paper, by using the viscosity iterative method and the hybrid steepest-descent method, we present a new algorithm for solving the variational inequality problem. The sequence generated by this algorithm is strong convergence to a common element of the set of common zero points of a finite family of inverse strongly monotone operators and the set of common fixed points of a finite family...
متن کاملψ-pseudomonotone generalized strong vector variational inequalities with application
In this paper, we establish an existence result of the solution for an generalized strong vector variational inequality already considered in the literature and as applications we obtain a new coincidence point theorem in Hilbert spaces.
متن کاملSome Fixed Point Theorems in Generalized Metric Spaces Endowed with Vector-valued Metrics and Application in Linear and Nonlinear Matrix Equations
Let $mathcal{X}$ be a partially ordered set and $d$ be a generalized metric on $mathcal{X}$. We obtain some results in coupled and coupled coincidence of $g$-monotone functions on $mathcal{X}$, where $g$ is a function from $mathcal{X}$ into itself. Moreover, we show that a nonexpansive mapping on a partially ordered Hilbert space has a fixed point lying in the unit ball of the Hilbert space. ...
متن کاملMonotone variational inequalities, generalized equilibrium problems and fixed point methods
In this paper, we study monotone variational inequalities and generalized equilibrium problems. Weak convergence theorems are established based on a fixed point method in the framework of Hilbert spaces.
متن کاملFixed point theorems for generalized quasi-contractions in cone $b$-metric spaces over Banach algebras without the assumption of normality with applications
In this paper, we introduce the concept of generalized quasi-contractions in the setting of cone $b$-metric spaces over Banach algebras. By omitting the assumption of normality we establish common fixed point theorems for the generalized quasi-contractions with the spectral radius $r(lambda)$ of the quasi-contractive constant vector $lambda$ satisfying $r(lambda)in [0,frac{1}{s})$ in the set...
متن کامل