Functional subdivision of trunk visceral mesoderm parasegments in Drosophila is required for gut and trachea development.

نویسندگان

  • Chie Hosono
  • Katsumi Takaira
  • Ryo Matsuda
  • Kaoru Saigo
چکیده

In Drosophila, trunk visceral mesoderm, a derivative of dorsal mesoderm, gives rise to circular visceral muscles. It has been demonstrated that the trunk visceral mesoderm parasegment is subdivided into at least two domains by connectin expression, which is regulated by Hedgehog and Wingless emanating from the ectoderm. We now extend these findings by examining a greater number of visceral mesodermal genes, including hedgehog and branchless. Each visceral mesodermal parasegment appears to be divided into five or six regions, based on differences in expression patterns of these genes. Ectodermal Hedgehog and Wingless differentially regulate the expression of these metameric targets in trunk visceral mesoderm. hedgehog expression in trunk visceral mesoderm is responsible for maintaining its own expression and con expression. hedgehog expressed in visceral mesoderm parasegment 3 may also be required for normal decapentaplegic expression in this region and normal gastric caecum development. branchless expressed in each trunk visceral mesodermal parasegment serves as a guide for the initial budding of tracheal visceral branches. The metameric pattern of trunk visceral mesoderm, organized in response to ectodermal instructive signals, is thus maintained at a later time via autoregulation, is required for midgut morphogenesis and exerts feedback effect on trachea, ectodermal derivatives.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

decapentaplegic is a direct target of dTcf repression in the Drosophila visceral mesoderm.

Drosophila T cell factor (dTcf) mediates transcriptional activation in the presence of Wingless signalling and repression in its absence. Wingless signalling is required for the correct expression of decapentaplegic (dpp), a Transforming Growth Factor (beta) family member, in parasegments 3 and 7 of the Drosophila visceral mesoderm. Here we demonstrate that a dpp enhancer element, which directs...

متن کامل

Segmentation and specification of the Drosophila mesoderm.

Patterning of the developing mesoderm establishes primordia of the visceral, somatic, and cardiac tissues at defined anteroposterior and dorsoventral positions in each segment. Here we examine the mechanisms that locate and determine these primordia. We focus on the regulation of two mesodermal genes: bagpipe (bap), which defines the anlagen of the visceral musculature of the midgut, and serpen...

متن کامل

Cross regulation of decapentaplegic and Ultrabithorax transcription in the embryonic visceral mesoderm of Drosophila.

The Drosophila decapentaplegic gene (dpp) encodes a TGF-beta family member involved in signal transduction during embryonic midgut formation. The shortvein (shv) class of cis-regulatory dpp mutants disrupt expression in parasegments 4 and 7 (ps4 and ps7) of the embryonic visceral mesoderm (VM) surrounding the gut and cause abnormalities in gut morphogenesis. We demonstrate that cis-regulatory e...

متن کامل

Hindgut visceral mesoderm requires an ectodermal template for normal development in Drosophila.

During Drosophila embryogenesis, the development of the midgut endoderm depends on interactions with the overlying visceral mesoderm. Here we show that the development of the hindgut also depends on cellular interactions, in this case between the inner ectoderm and outer visceral mesoderm. In this section of the gut, the ectoderm is essential for the proper specification and differentiation of ...

متن کامل

Differential rescue of visceral and cardiac defects in Drosophila by vertebrate tinman-related genes.

tinman, a mesodermal NK2-type homeobox gene, is absolutely required for the subdivision of the early Drosophila mesoderm and for the formation of the heart as well as the visceral muscle primordia. Several vertebrate relatives of tinman, many of which are predominately expressed in the very early cardiac progenitors (and pharyngeal endoderm), also seem to promote heart development. Here, we sho...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Development

دوره 130 3  شماره 

صفحات  -

تاریخ انتشار 2003