The importance of longer wavelength reheating in dual-pulse laser-induced breakdown spectroscopy

نویسندگان

  • R. W. Coons
  • A. Hassanein
چکیده

Dual-pulse laser-induced breakdown spectroscopy (LIBS) provides improved sensitivity compared to conventional single-pulse LIBS. We used a combination of Nd: yttrium aluminum garnet (YAG) and CO2 lasers to improve the sensitivity of LIBS. Significant emission intensity enhancement is noticed for both excited neutral lines and ionic lines for dual-pulse LIBS compared to single-pulse LIBS. However, the enhancement factor is found to be dependend on the energy levels of the lines, and resonance lines provided maximum enhancement. Our results indicate that IR reheating will cause significant improvement in sensitivity, regardless of the conditions, even with an unfocused reheating beam. The improved sensitivity with a YAG-CO2 laser combination is caused by the effective reheating of the preplume with a longer wavelength laser is due to efficient inverse Bremsstrahlung absorption. The role of the spot sizes, inter-pulse delay times, energies of the preheating and reheating pulses on the LIBS sensitivity improvements are discussed.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Role of laser pre-pulse wavelength and inter-pulse delay on signal enhancement in collinear double-pulse laser-induced breakdown spectroscopy

a r t i c l e i n f o Keywords: LIBS Double pulse LIBS Plasma diagnostics LPP Dual-pulse (DP) laser-induced breakdown spectroscopy (LIBS) provides significant improvement in signal intensity as compared to conventional single-pulse LIBS. We investigated collinear DPLIBS experimental performance using various laser wavelength combinations employing 1064 nm, 532 nm, and 266 nm Nd:YAG lasers. In p...

متن کامل

Double pulse laser ablation and plasma: Laser induced breakdown spectroscopy signal enhancement

A review of recent results of the studies of double laser pulse plasma and ablation for laser induced breakdown spectroscopy applications is presented. The double pulse laser induced breakdown spectroscopy configuration was suggested with the aim of overcoming the sensitivity shortcomings of the conventional single pulse laser induced breakdown spectroscopy technique. Several configurations hav...

متن کامل

Electron-ion relaxation time dependent signal enhancement in ultrafast double-pulse laser-induced breakdown spectroscopy

We investigated the emission properties of collinear double-pulse compared to single-pulse ultrafast laser induced breakdown spectroscopy. Our results showed that the significant signal enhancement noticed in the double pulse scheme is strongly correlated to the characteristic electron-ion relaxation time and hence to the inter-pulse delays. Spectroscopic excitation temperature analysis showed ...

متن کامل

The effect of self-absorption correction using internal reference on determining heavy metals concentration by laser induced breakdown spectroscopy

The identification and concentration of heavy metals, which may be so harmful for the body, is determined by the method of calibration-free laser-induced breakdown spectroscopy using a special strategy. First, the plasma temperature is obtained using the Boltzmann plot. Then, a line with an inappreciable self-absorption is considered for each element as the reference. The modified intensities o...

متن کامل

Double-pulse Nd:YAG-CO2 LIBS Excitation for Bulk and Trace Analytes

Laser-induced breakdown spectroscopy [LIBS] is a commonly used technique for multi-element analyses for various applications such as space exploration, nuclear forensics, environmental analysis, process monitoring. The advantages of the LIBS technique include robustness, ease of use, field portability, and real-time, non-invasive multi-element analyses. However, in comparison to other lab based...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012