Improved estimates of partial volume coefficients from noisy brain MRI using spatial context
نویسندگان
چکیده
This paper addresses the problem of accurate voxel-level estimation of tissue proportions in the human brain magnetic resonance imaging (MRI). Due to the finite resolution of acquisition systems, MRI voxels can contain contributions from more than a single tissue type. The voxel-level estimation of this fractional content is known as partial volume coefficient estimation. In the present work, two new methods to calculate the partial volume coefficients under noisy conditions are introduced and compared with current similar methods. Concretely, a novel Markov Random Field model allowing sharp transitions between partial volume coefficients of neighbouring voxels and an advanced non-local means filtering technique are proposed to reduce the errors due to random noise in the partial volume coefficient estimation. In addition, a comparison was made to find out how the different methodologies affect the measurement of the brain tissue type volumes. Based on the obtained results, the main conclusions are that (1) both Markov Random Field modelling and non-local means filtering improved the partial volume coefficient estimation results, and (2) non-local means filtering was the better of the two strategies for partial volume coefficient estimation.
منابع مشابه
An Efficient Framework for Accurate Arterial Input Selection in DSC-MRI of Glioma Brain Tumors
Introduction: Automatic arterial input function (AIF) selection has an essential role in quantification of cerebral perfusion parameters. The purpose of this study is to develop an optimal automatic method for AIF determination in dynamic susceptibility contrast magnetic resonance imaging (DSC-MRI) of glioma brain tumors by using a new preprocessing method.Material and Methods: For this study, ...
متن کاملImproving the Performance of ICA Algorithm for fMRI Simulated Data Analysis Using Temporal and Spatial Filters in the Preprocessing Phase
Introduction: The accuracy of analyzing Functional MRI (fMRI) data is usually decreases in the presence of noise and artifact sources. A common solution in for analyzing fMRI data having high noise is to use suitable preprocessing methods with the aim of data denoising. Some effects of preprocessing methods on the parametric methods such as general linear model (GLM) have previously been evalua...
متن کاملMagnetic resonance image tissue classification using a partial volume model.
We describe a sequence of low-level operations to isolate and classify brain tissue within T1-weighted magnetic resonance images (MRI). Our method first removes nonbrain tissue using a combination of anisotropic diffusion filtering, edge detection, and mathematical morphology. We compensate for image nonuniformities due to magnetic field inhomogeneities by fitting a tricubic B-spline gain field...
متن کاملBrain Volume Estimation Enhancement by Morphological Image Processing Tools
Background: Volume estimation of brain is important for many neurological applications. It is necessary in measuring brain growth and changes in brain in normal/abnormal patients. Thus, accurate brain volume measurement is very important. Magnetic resonance imaging (MRI) is the method of choice for volume quantification due to excellent levels of image resolution and between-tissue contrast. St...
متن کاملTopology-corrected segmentation and local intensity estimates for improved partial volume classification of brain cortex in MRI.
In magnetic resonance imaging (MRI), accuracy and precision with which brain structures may be quantified are frequently affected by the partial volume (PV) effect. PV is due to the limited spatial resolution of MRI compared to the size of anatomical structures. Accurate classification of mixed voxels and correct estimation of the proportion of each pure tissue (fractional content) may help to ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- NeuroImage
دوره 53 2 شماره
صفحات -
تاریخ انتشار 2010