QUANTUM n-SPACE AS A QUOTIENT OF CLASSICAL n-SPACE
نویسنده
چکیده
The prime and primitive spectra of Oq(k), the multiparameter quantized coordinate ring of affine n-space over an algebraically closed field k, are shown to be topological quotients of the corresponding classical spectra, specO(kn) and maxO(kn) ≈ kn, provided the multiplicative group generated by the entries of q avoids −1.
منابع مشابه
Some relations between $L^p$-spaces on locally compact group $G$ and double coset $Ksetminus G/H$
Let $H$ and $K$ be compact subgroups of locally compact group $G$. By considering the double coset space $Ksetminus G/H$, which equipped with an $N$-strongly quasi invariant measure $mu$, for $1leq pleq +infty$, we make a norm decreasing linear map from $L^p(G)$ onto $L^p(Ksetminus G/H,mu)$ and demonstrate that it may be identified with a quotient space of $L^p(G)$. In addition, we illustrate t...
متن کامل1 0 M ay 1 99 9 QUANTUM n - SPACE AS A QUOTIENT OF CLASSICAL n - SPACE
The prime and primitive spectra of Oq(kn), the multiparameter quantized coordinate ring of affine n-space over an algebraically closed field k, are shown to be topological quotients of the corresponding classical spectra, specO(k) and maxO(k) ≈ k, provided the multiplicative group generated by the entries of q avoids −1.
متن کاملTopological structure on generalized approximation space related to n-arry relation
Classical structure of rough set theory was first formulated by Z. Pawlak in [6]. The foundation of its object classification is an equivalence binary relation and equivalence classes. The upper and lower approximation operations are two core notions in rough set theory. They can also be seenas a closure operator and an interior operator of the topology induced by an equivalence relation on a u...
متن کاملدینامیک کوانتومی ذره جرمدار روی دوسیتر 3+1
The phase space which is related to the motion of massive particle on 1+3- De sitter space is a 3-dimensional complex sphere. Our main aim in this study is discribing this movement in the frame quantum mechanics. Transfering from classical mechanic to quantum mechanics is possible by means of coherent states. Thus, after determination of this state, we quantize some of the classical observables.
متن کاملMaximal prehomogeneous subspaces on classical groups
Suppose $G$ is a split connected reductive orthogonal or symplectic group over an infinite field $F,$ $P=MN$ is a maximal parabolic subgroup of $G,$ $frak{n}$ is the Lie algebra of the unipotent radical $N.$ Under the adjoint action of its stabilizer in $M,$ every maximal prehomogeneous subspaces of $frak{n}$ is determined.
متن کامل