Simulation of heat transfer in zone plate optics irradiated by X-ray free electron laser radiation

نویسنده

  • D. Nilsson
چکیده

Zone plates are high quality optics that have the potential to provide diffraction-limited nano-focusing of hard X-ray free electron laser radiation. The present publication investigates theoretically the temperature behavior of metal zone plates on a diamond substrate irradiated by 0.1 nm X-rays from the European X-ray Free Electron Laser. The heat transfer in the optic is simulated by solving the transient heat equation with the finite element method. Two different zone plate designs are considered, one small zone plate placed in the direct beam and one larger zone plate after the monochromator. The main result is that for all investigated cases the maximum temperature in the metal zone plate layer is at least a factor 2 below the melting point of the respective material, proving the efficiency of the proposed cooling scheme. However, zone plates in the direct beam experience large and rapid temperature fluctuations of several hundred Kelvin that might prove fatal to the optic. The situation is different for optics behind the monochromator with fluctuations in the 20 K range and maximum temperatures well below room temperature. The simulation results give valuable indications on the temperature behavior to be expected and are a basis for future experimental heat transfer and mechanical stability investigations of fabricated nanostructures. & 2010 Elsevier B.V. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Computer simulation of heat transfer in zone plate optics exposed to X-ray FEL radiation

Zone plates are circular diffraction gratings that can provide diffraction-limited nano-focusing of x-ray radiation. When designing zone plates for X-ray Free Electron Laser (XFEL) sources special attention has to be made concerning the high intensity of the sources. Absorption of x-rays in the zone material can lead to significant temperature increases in a single pulse and potentially destroy...

متن کامل

Zone Plates for Hard X-Ray Free-Electron Lasers

Hard x-ray free-electron lasers are novel sources of coherent x-rays with unprecedented brightness and very short pulses. The radiation from these sources enables a wide range of new experiments that were not possible with previous x-ray sources. Many of these experiments require the possibility to focus the intense x-ray beam onto small samples. This Thesis investigates the possibility to use ...

متن کامل

Thermal stability of tungsten zone plates for focusing hard x-ray free-electron laser radiation

Diffractive Fresnel zone plates made of tungsten show great promise for focusing hard x-ray free-electron laser (XFEL) radiation to very small spot sizes. However, they have to withstand the high-intensity pulses of the beam without being damaged. This might be problematic since each XFEL pulse will create a significant temperature increase in the zone plate nanostructures and it is therefore c...

متن کامل

Effects of thermal diffusion and chemical reaction on MHD transient free convection flow past a porous vertical plate with radiation, temperature gradient dependent heat source in slip flow regime

An analytical investigation is conducted to study the unsteady free convection heat and mass transfer flow through a non-homogeneous porous medium with variable permeability bounded by an infinite porous vertical plate in slip flow regime while taking into account the thermal radiation, chemical reaction, the Soret number, and temperature gradient dependent heat source. The flow is considered u...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010