Long-term trend analysis and climatology of tropical cirrus clouds using 16 years of lidar data set over Southern India
نویسندگان
چکیده
Sixteen-year (1998–2013) climatology of cirrus clouds and their macrophysical (base height, top height and geometrical thickness) and optical properties (cloud optical thickness) observed using a ground-based lidar over Gadanki (13.5 N, 79.2 E), India, is presented. The climatology obtained from the ground-based lidar is compared with the climatology obtained from 7 and a half years (June 2006– December 2013) of Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) observations. A very good agreement is found between the two climatologies in spite of their opposite viewing geometries and the differences in sampling frequencies. Nearly 50–55 % of cirrus clouds were found to possess geometrical thickness less than 2 km. Ground-based lidar is found to detect a higher number of sub-visible clouds than CALIOP which has implications for global warming studies as sub-visible cirrus clouds have significant positive radiative forcing. Cirrus clouds with mid-cloud temperatures between −50 to −70 C have a mean geometrical thickness greater than 2 km in contrast to the earlier reported value of 1.7 km. Trend analyses reveal a statistically significant increase in the altitude of sub-visible cirrus clouds which is consistent with the recent climate model simulations. The mid-cloud altitude of sub-visible cirrus clouds is found to be increasing at the rate of 41± 21 m year. Statistically significant decrease in optical thickness of sub-visible and thick cirrus clouds is observed. Also, the fraction of sub-visible cirrus cloud is found to have increased by 9 % in the last 16 years (1998 to 2013). This increase is mainly compensated by a 7 % decrease in thin cirrus cloud fraction. This has implications for the temperature and water vapour budget in the tropical tropopause layer.
منابع مشابه
An Investigation of Cirrus Cloud Properties Using Airborne Lidar
Title of dissertation: AN INVESTIGATION OF CIRRUS CLOUD PROPERTIES USING AIRBORNE LIDAR John Edward Yorks, Doctor of Philosophy, 2014 Dissertation directed by: Russell R. Dickerson Department of Atmospheric and Oceanic Science The impact of cirrus clouds on the Earth’s radiation budget remains a key uncertainty in assessing global radiative balance and climate change. Composed of ice, and locat...
متن کاملCentennial rainfall variation in semi arid and tropical humid environments in the cardamom hill slopes, southern Western Ghats, India
Studies of rainfall variation generally focus on large areas. For example, in India, the area average monsoon rainfall series of the whole country or meteorological subdivisions are used. This would be of no use for local agriculture, particularly in places where rainfall is very high or very low, especially for crops like small cardamom and vanilla which are very sensitive to soil moisture and...
متن کاملComparison of cloud statistics from spaceborne lidar systems
The distribution of clouds in a vertical column is assessed on the global scale through analysis of lidar measurements obtained from three spaceborne lidar systems: LITE (Lidar In-space Technology Experiment, NASA), GLAS (Geoscience Laser Altimeter System, NASA), and CALIOP (Cloud-Aerosol LIdar with Orthogonal Polarization). Cloud top height (CTH) is obtained from the LITE profiles based on a s...
متن کاملInvestigation of Long Term Trend of Spatio-Temporal changes of Sea Surface Temperature in Oman Sea
Considering the vast application of sea surface temperature in climatic and oceanic investigations, this parameter was studied in Oman Sea from 1986 to 2015. The SST was surveyed using trend analysis and Global and local Moran’s I spatial autocorrelation. In trend analysis, the Mann-Kendall test was used to determine the trend of SST changes and the Sen's Estimator method was used to examine th...
متن کامل