Jahn-Teller, polarity, and insulator-to-metal transition in BiMnO3 at high pressure.
نویسندگان
چکیده
The interaction of coexisting structural instabilities in multiferroic materials gives rise to intriguing coupling phenomena and extraordinarily rich phase diagrams, both in bulk materials and strained thin films. Here we investigate the multiferroic BiMnO3 with its peculiar 6s2 electrons and four interacting mechanisms: electric polarity, octahedra tilts, magnetism, and cooperative Jahn-Teller distortion. We have probed structural transitions under high pressure by synchrotron x-ray diffraction and Raman spectroscopy up to 60 GPa. We show that BiMnO3 displays under pressure a rich sequence of five phases with a great variety of structures and properties, including a metallic phase above 53 GPa and, between 37 and 53 GPa, a strongly elongated monoclinic phase that allows ferroelectricity, which contradicts the traditional expectation that ferroelectricity vanishes under pressure. Between 7 and 37 GPa, the Pnma structure remains remarkably stable but shows a reduction of the Jahn-Teller distortion in a way that differs from the behavior observed in the archetypal orthorhombic Jahn-Teller distorted perovskite LaMnO3.
منابع مشابه
Persistence of Jahn-Teller distortion up to the insulator to metal transition in LaMnO3.
High pressure, low temperature Raman measurements performed on LaMnO3 up to 34 GPa provide the first experimental evidence for the persistence of the Jahn-Teller distortion over the entire stability range of the insulating phase. This result resolves the ongoing debate about the nature of the pressure driven insulator to metal transition (IMT), demonstrating that LaMnO3 is not a classical Mott ...
متن کاملPressure-induced quenching of the Jahn-Teller distortion and insulator-to-metal transition in LaMnO(3).
LaMnO(3) was studied by synchrotron x-ray diffraction, optical spectroscopies, and transport measurements under pressures up to 40 GPa. The cooperative Jahn-Teller (JT) distortion is continuously reduced with increasing pressure. There is strong indication that the JT effect and the concomitant orbital order are completely suppressed above 18 GPa. The system, however, retains its insulating sta...
متن کاملPressure-induced metal-insulator transition in LaMnO3 is not of Mott-Hubbard type.
Calculations employing the local density approximation combined with static and dynamical mean field theories (LDA+U and LDA+DMFT) indicate that the metal-insulator transition observed at 32 GPa in paramagnetic LaMnO3 at room temperature is not a Mott-Hubbard transition, but is caused by orbital splitting of the majority-spin eg bands. For LaMnO3 to be insulating at pressures below 32 GPa, both...
متن کاملPressure-induced insulator-metal transition in EuMnO3.
We study the influence of external pressure on the electronic and magnetic structure of EuMnO3 from first-principles calculations. We find a pressure-induced insulator-metal transition at which the magnetic order changes from A-type antiferromagnetic to ferromagnetic with a strong interplay with Jahn-Teller distortions. In addition, we find that the non-centrosymmetric E *-type antiferromagneti...
متن کاملEffect of disorder in an orbitally ordered Jahn-Teller insulator
We study a two-dimensional, two-band double-exchange model for eg electrons coupled to Jahn-Teller distortions in the presence of quenched disorder using a recently developed Monte Carlo technique. In the absence of disorder the half-filled system at low temperatures is an orbitally ordered ferromagnetic insulator with a staggered pattern of Jahn-Teller distortions. We examine the finite-temper...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review letters
دوره 112 7 شماره
صفحات -
تاریخ انتشار 2014