A biomechanical mechanism for initiating DNA packaging
نویسندگان
چکیده
The bacterial chromosome is under varying levels of mechanical stress due to a high degree of crowding and dynamic protein-DNA interactions experienced within the nucleoid. DNA tension is difficult to measure in cells and its functional significance remains unclear although in vitro experiments have implicated a range of biomechanical phenomena. Using single-molecule tools, we have uncovered a novel protein-DNA interaction that responds to fluctuations in mechanical tension by condensing DNA. We combined tethered particle motion (TPM) and optical tweezers experiments to probe the effects of tension on DNA in the presence of the Hha/H-NS complex. The nucleoid structuring protein H-NS is a key regulator of DNA condensation and gene expression in enterobacteria and its activity in vivo is affected by the accessory factor Hha. We find that tension, induced by optical tweezers, causes the rapid compaction of DNA in the presence of the Hha/H-NS complex, but not in the presence of H-NS alone. Our results imply that H-NS requires Hha to condense bacterial DNA and that this condensation could be triggered by the level of mechanical tension experienced along different regions of the chromosome.
منابع مشابه
Structural changes of bacteriophage phi29 upon DNA packaging and release.
Cryo-electron microscopy three-dimensional reconstructions have been made of mature and of emptied bacteriophage phi29 particles without making symmetry assumptions. Comparisons of these structures with each other and with the phi29 prohead indicate how conformational changes might initiate successive steps of assembly and infection. The 12 adsorption capable 'appendages' were found to have a s...
متن کاملMechanism for coordinated RNA packaging and genome replication by rotavirus polymerase VP1.
Rotavirus RNA-dependent RNA polymerase VP1 catalyzes RNA synthesis within a subviral particle. This activity depends on core shell protein VP2. A conserved sequence at the 3' end of plus-strand RNA templates is important for polymerase association and genome replication. We have determined the structure of VP1 at 2.9 A resolution, as apoenzyme and in complex with RNA. The cage-like enzyme is si...
متن کاملMaturation in action: CryoEM study of a viral capsid caught during expansion.
Bacteriophage HK97 maturation involves discrete intermediate particle forms, comparable to transitional states in protein folding, before reaching its mature form. The process starts by formation of a metastable prohead, poised for exothermic expansion triggered by DNA packaging. During maturation, the capsid subunit transitions from a strained to a canonical tertiary conformation and this has ...
متن کاملTranslocation of nicked but not gapped DNA by the packaging motor of bacteriophage phi29.
The biomolecular mechanism that the double-stranded DNA viruses employ to insert and package their genomic DNA into a preformed procapsid is still elusive. To better characterize this process, we investigated packaging of bacteriophage phi29 DNA with structural alterations. phi29 DNA was modified in vitro by nicking at random sites with DNase I, or at specific sites with nicking enzyme N.BbvC I...
متن کاملThe Structure of the Phage T4 DNA Packaging Motor Suggests a Mechanism Dependent on Electrostatic Forces
Viral genomes are packaged into "procapsids" by powerful molecular motors. We report the crystal structure of the DNA packaging motor protein, gene product 17 (gp17), in bacteriophage T4. The structure consists of an N-terminal ATPase domain, which provides energy for compacting DNA, and a C-terminal nuclease domain, which terminates packaging. We show that another function of the C-terminal do...
متن کامل