Binaural segregation in multisource reverberant environments.

نویسندگان

  • Nicoleta Roman
  • Soundararajan Srinivasan
  • DeLiang Wang
چکیده

In a natural environment, speech signals are degraded by both reverberation and concurrent noise sources. While human listening is robust under these conditions using only two ears, current two-microphone algorithms perform poorly. The psychological process of figure-ground segregation suggests that the target signal is perceived as a foreground while the remaining stimuli are perceived as a background. Accordingly, the goal is to estimate an ideal time-frequency (T-F) binary mask, which selects the target if it is stronger than the interference in a local T-F unit. In this paper, a binaural segregation system that extracts the reverberant target signal from multisource reverberant mixtures by utilizing only the location information of target source is proposed. The proposed system combines target cancellation through adaptive filtering and a binary decision rule to estimate the ideal T-F binary mask. The main observation in this work is that the target attenuation in a T-F unit resulting from adaptive filtering is correlated with the relative strength of target to mixture. A comprehensive evaluation shows that the proposed system results in large SNR gains. In addition, comparisons using SNR as well as automatic speech recognition measures show that this system outperforms standard two-microphone beamforming approaches and a recent binaural processor.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Binaural deep neural network classification for reverberant speech segregation

While human listening is robust in complex auditory scenes, current speech segregation algorithms do not perform well in noisy and reverberant environments. This paper addresses the robustness in binaural speech segregation by employing binary classification based on deep neural networks (DNNs). We systematically examine DNN generalization to untrained configurations. Evaluations and comparison...

متن کامل

Binaural Cues for Fragment-Based Speech Recognition in Reverberant Multisource Environments

This paper addresses the problem of speech recognition using distant binaural microphones in reverberant multisource noise conditions. Our scheme employs a two stage fragment decoding approach: first spectro-temporal acoustic source fragments are identified using signal level cues, and second, a hypothesisdriven stage simultaneously searches for the most probable speech/background fragment labe...

متن کامل

Integrating Monaural and Binaural Cues for Sound Localization and Segregation in Reverberant Environments

The problem of segregating a sound source of interest from an acoustic background has been extensively studied due to applications in hearing prostheses, robust speech/speaker recognition and audio information retrieval. Computational auditory scene analysis (CASA) approaches the segregation problem by utilizing grouping cues involved in the perceptual organization of sound by human listeners. ...

متن کامل

Binaural Reverberant Speech Separation Based on Deep Neural Networks

Supervised learning has exhibited great potential for speech separation in recent years. In this paper, we focus on separating target speech in reverberant conditions from binaural inputs using supervised learning. Specifically, deep neural network (DNN) is constructed to map from both spectral and spatial features to a training target. For spectral features extraction, we first convert binaura...

متن کامل

Recent advances in fragment-based speech recognition in reverberant multisource environments

This paper addresses the problem of speech recognition using distant binaural microphones in reverberant multisource noise conditions. Our scheme employs a two stage fragment decoding approach: first spectro-temporal acoustic source fragments are identified using signal level cues, and second, a hypothesisdriven stage simultaneously searches for the most probable speech/background fragment labe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of the Acoustical Society of America

دوره 120 6  شماره 

صفحات  -

تاریخ انتشار 2006