A Note on the Symplectic Structure on the Space of G-monopoles

نویسنده

  • MICHAEL FINKELBERG
چکیده

1.1. Let G be a semisimple complex Lie group with the Cartan datum (I, ·) and the root datum (Y,X, . . . ). Let H ⊂ B = B+,B− ⊂ G be a Cartan subgroup and a pair of opposite Borel subgroups respectively. Let X = G/B be the flag manifold of G. Let C = P ∋ ∞ be the projective line. Let α = ∑ i∈I aii ∈ N[I] ⊂ H2(X,Z). The moduli space of G-monopoles of topological charge α (see e.g. [4]) is naturally identified with the space Mb(X, α) of based maps from (C,∞) to (X,B+) of degree α. The moduli space of G-monopoles carries a natural hyperkähler structure, and hence a holomorphic symplectic structure. We propose a simple explicit formula for the symplectic structure on Mb(X, α). It generalizes the well known formula for G = SL2 [1]. 1.2. Recall that for G = SL2 we have (X,B+) = (P ,∞). Recall the natural local coordinates on Mb(P , a) (see [1]). We fix a coordinate z on C such that z(∞) = ∞. Then a based map φ : (C,∞) → (P,∞) of degree a is a rational function p(z) q(z) where

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Maximal prehomogeneous subspaces on classical groups

Suppose $G$ is a split connected‎ ‎reductive orthogonal or symplectic group over an infinite field‎ ‎$F,$ $P=MN$ is a maximal parabolic subgroup of $G,$ $frak{n}$ is‎ ‎the Lie algebra of the unipotent radical $N.$ Under the adjoint‎ ‎action of its stabilizer in $M,$ every maximal prehomogeneous‎ ‎subspaces of $frak{n}$ is determined‎.

متن کامل

On Contact and Symplectic Lie Algeroids

In this paper, we will study compatible triples on Lie algebroids. Using a suitable decomposition for a Lie algebroid, we construct an integrable generalized distribution on the base manifold. As a result, the symplectic form on the Lie algebroid induces a symplectic form on each integral submanifold of the distribution. The induced Poisson structure on the base manifold can be represented by m...

متن کامل

A Note on Belief Structures and S-approximation Spaces

We study relations between evidence theory and S-approximation spaces. Both theories have their roots in the analysis of Dempsterchr('39')s multivalued mappings and lower and upper probabilities, and have close relations to rough sets. We show that an S-approximation space, satisfying a monotonicity condition, can induce a natural belief structure which is a fundamental block in evidence theory...

متن کامل

Tangent Bundle of the Hypersurfaces in a Euclidean Space

Let $M$ be an orientable hypersurface in the Euclidean space $R^{2n}$ with induced metric $g$ and $TM$ be its tangent bundle. It is known that the tangent bundle $TM$ has induced metric $overline{g}$ as submanifold of the Euclidean space $R^{4n}$ which is not a natural metric in the sense that the submersion $pi :(TM,overline{g})rightarrow (M,g)$ is not the Riemannian submersion. In this paper...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999