CFTR inhibition mimics the cystic fibrosis inflammatory profile.
نویسندگان
چکیده
Primary airway epithelial cells grown in air-liquid interface differentiate into cultures that resemble native epithelium morphologically, express ion transport similar to those in vivo, and secrete cytokines in response to stimuli. Comparisons of cultures derived from normal and cystic fibrosis (CF) individuals are difficult to interpret due to genetic differences besides CFTR. The recently discovered CFTR inhibitor, CFTR(inh)-172, was used to create a CF model with its own control to test if loss of CFTR-Cl(-) conductance alone was sufficient to initiate the CF inflammatory response. Continuous inhibition of CFTR-Cl(-) conductance for 3-5 days resulted in significant increase in IL-8 secretion at basal (P = 0.006) and in response to 10(9) Pseudomonas (P = 0.0001), a fourfold decrease in Smad3 expression (P = 0.02), a threefold increase in RhoA expression, and increased NF-kappaB nuclear translocation upon TNF-alpha/IL-1beta stimulation (P < 0.000001). CFTR inhibition by CFTR(inh)-172 over this period does not increase epithelial sodium channel activity, so lack of Cl(-) conductance alone can mimic the inflammatory CF phenotype. CFTR(inh)-172 does not affect IL-8, IL-6, or granulocyte/macrophage colony-stimulating factor secretion in two CF phenotype immortalized cell lines: 9/HTEo(-) pCEP-R and 16HBE14o(-) AS, or IL-8 secretion in primary CF cells, and inhibitor withdrawal abolishes the increased response, so CFTR(inh)-172 effects on cytokines are not direct. Five-day treatment with CFTR(inh)-172 does not affect cells deleteriously as evidenced by lactate dehydrogenase, trypan blue, ciliary activity, electron micrograph histology, and inhibition reversibility. Our results support the hypothesis that lack of CFTR activity is responsible for the onset of the inflammatory cascade in the CF lung.
منابع مشابه
Analysis of CFTR Gene Mutations in Children with Cystic Fibrosis, First Report from North-East of Iran
Objective(s): More than 1500 registered mutations in cystic fibrosis transmembrane regulator (CFTR) gene are responsible for dysfunction of an ion channel protein and a wide spectrum of clinical manifestations in patients with cystic fibrosis (CF). This study was performed to investigate the frequency of a number of well-known CFTR mutations in North Eastern Iranian CF patients. Material and...
متن کاملCFTR Mutations in Congenital Absence of Vas Deferens
A qualitative diagnosis of infertility requires attention to female and male physical abnormalities, endocrine anomalies and genetic conditions that interfere with reproduction. Many genes are likely to be involved in the complex process of reproduction. Cystic fibrosis (CF) incidence varies in different White people populations (a higher incidence of CF is observed in northern–western European...
متن کاملNovel CFTR Mutations in Two Iranian Families with Severe Cystic Fibrosis
Background: Cystic fibrosis (CF) is a common autosomal recessive disorder that affects many body systems and is produced by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. CF is also the most frequently inherited disorder in the West. The aim of this study was to detect the mutations in the CFTR gene in two Iranian families with CF. Methods: After DNA extractio...
متن کاملMutation and Rare Polymorphisms Insight in Exons 7 and 20 of CFTR Gene in Non-Caucasian Cystic Fibrosis Patients
Cystic fibrosis (CF) is the most common severe autosomal recessive disorder caused by a wide spectrum of mutations in the gene encoding for the cystic fibrosis transmembrane conductance regulator (CFTR) protein. The frequencies, types and distributions of mutations vary widely between different populations and ethnic groups. The aim of this study was to perform a comprehensive analysis of the C...
متن کاملCystic fibrosis transmembrane regulator inhibitors CFTR(inh)-172 and GlyH-101 target mitochondrial functions, independently of chloride channel inhibition.
Two highly potent and selective cystic fibrosis (CF) transmembrane regulator (CFTR) inhibitors have been identified by high-throughput screening: the thiazolidinone CFTR(inh)-172 [3-[(3-trifluoromethyl)phenyl]-5-[(4-carboxyphenyl)methylene]- 2-thioxo-4-thiazolidinone] and the glycine hydrazide GlyH-101 [N-(2-naphthalenyl)-((3,5-dibromo-2,4-dihydroxyphenyl)methylene)glycine hydrazide]. Inhibitio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Lung cellular and molecular physiology
دوره 292 2 شماره
صفحات -
تاریخ انتشار 2007