Periodic Traveling Waves of the Regularized Short Pulse and Ostrovsky Equations: Existence and Stability
نویسندگان
چکیده
We construct various periodic travelling wave solutions of the Ostrovsky/HunterSaxton/short pulse equation and its KdV regularized version. For the regularized short pulse model with small Coriolis parameter, we describe a family of periodic travelling waves which are a perturbation of appropriate KdV solitary waves. We show that these waves are spectrally stable. For the short pulse model, we construct a family of travelling peakons with corner crests. We show that the peakons are spectrally stable as well.
منابع مشابه
Periodic Travelling Waves of the Short Pulse Equation: Existence and Stability
We construct various periodic travelling wave solutions of the Ostrovsky/HunterSaxton/short pulse equation and its KdV regularized version. For the regularized short pulse model with small Coriolis parameter, we describe a family of periodic travelling waves which are a perturbation of appropriate KdV solitary waves. We show that these waves are spectrally stable. For the short pulse model, we ...
متن کاملSolitary Waves of the Regularized Short Pulse and Ostrovsky Equations
We derive a model for the propagation of short pulses in nonlinear media. The model is a higher order regularization of the short pulse equation (SPE). The regularization term arises as the next term in the expansion of the susceptibility in derivation of the SPE. Without the regularization term there do not exist traveling pulses in the class of piecewise smooth functions with one discontinuit...
متن کاملTraveling Waves of Some Symmetric Planar Flows of Non-Newtonian Fluids
We present some variants of Burgers-type equations for incompressible and isothermal planar flow of viscous non-Newtonian fluids based on the Cross, the Carreau and the power-law rheology models, and on a symmetry assumption on the flow. We numerically solve the associated traveling wave equations by using industrial data and in order to validate the models we prove existence and uniqueness of ...
متن کاملSpectral stability of periodic waves in the generalized reduced Ostrovsky equation
We consider stability of periodic travelling waves in the generalized reduced Ostrovsky equation with respect to co-periodic perturbations. Compared to the recent literature, we give a simple argument that proves spectral stability of all smooth periodic travelling waves independent of the nonlinearity power. The argument is based on the energy convexity and does not use coordinate transformati...
متن کاملValidity of the Weakly-nonlinear Solution of the Cauchy Problem for the Boussinesq–ostrovsky Equation
We consider the initial-value problem for the regularized Boussinesq–Ostrovsky equation in the class of periodic functions. Validity of the weakly-nonlinear solution, given in terms of two counter-propagating waves satisfying the uncoupled Ostrovsky equations, is examined. We prove analytically and illustrate numerically that the improved accuracy of the solution can be achieved at the time sca...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Math. Analysis
دوره 49 شماره
صفحات -
تاریخ انتشار 2017