The H3K9 dimethyltransferases EHMT1/2 protect against pathological cardiac hypertrophy.

نویسندگان

  • Bernard Thienpont
  • Jan Magnus Aronsen
  • Emma Louise Robinson
  • Hanneke Okkenhaug
  • Elena Loche
  • Arianna Ferrini
  • Patrick Brien
  • Kanar Alkass
  • Antonio Tomasso
  • Asmita Agrawal
  • Olaf Bergmann
  • Ivar Sjaastad
  • Wolf Reik
  • Hywel Llewelyn Roderick
چکیده

Cardiac hypertrophic growth in response to pathological cues is associated with reexpression of fetal genes and decreased cardiac function and is often a precursor to heart failure. In contrast, physiologically induced hypertrophy is adaptive, resulting in improved cardiac function. The processes that selectively induce these hypertrophic states are poorly understood. Here, we have profiled 2 repressive epigenetic marks, H3K9me2 and H3K27me3, which are involved in stable cellular differentiation, specifically in cardiomyocytes from physiologically and pathologically hypertrophied rat hearts, and correlated these marks with their associated transcriptomes. This analysis revealed the pervasive loss of euchromatic H3K9me2 as a conserved feature of pathological hypertrophy that was associated with reexpression of fetal genes. In hypertrophy, H3K9me2 was reduced following a miR-217-mediated decrease in expression of the H3K9 dimethyltransferases EHMT1 and EHMT2 (EHMT1/2). miR-217-mediated, genetic, or pharmacological inactivation of EHMT1/2 was sufficient to promote pathological hypertrophy and fetal gene reexpression, while suppression of this pathway protected against pathological hypertrophy both in vitro and in mice. Thus, we have established a conserved mechanism involving a departure of the cardiomyocyte epigenome from its adult cellular identity to a reprogrammed state that is accompanied by reexpression of fetal genes and pathological hypertrophy. These results suggest that targeting miR-217 and EHMT1/2 to prevent H3K9 methylation loss is a viable therapeutic approach for the treatment of heart disease.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

EHMT1 protein binds to nuclear factor-κB p50 and represses gene expression.

Transcriptional homeostasis relies on the balance between positive and negative regulation of gene transcription. Methylation of histone H3 lysine 9 (H3K9) is commonly correlated with gene repression. Here, we report that a euchromatic H3K9 methyltransferase, EHMT1, functions as a negative regulator in both the NF-κB- and type I interferon-mediated gene induction pathways. EHMT1 catalyzes H3K9 ...

متن کامل

The Possible Role of TNF-alpha in Physiological and Pathophysiological Cardiac Hypertrophy in Rats

Pathological cardiac hypertrophy was produced by partial abdominal aortic constriction (PAAC) for 4 wk, while physiological cardiac hypertrophy was produced by chronic swimming training (CST) for 8 wk in rats. Pentoxifylline (30 mg/kg, 300 mg/kg i.p., day-1) treatment was started three days before PAAC and CST and it was continued for 4 wk in PAAC and 8 wk in CST experimental model. The left ve...

متن کامل

Inhibition of Euchromatic Histone Methyltransferase 1 and 2 Sensitizes Chronic Myeloid Leukemia Cells to Interferon Treatment

BACKGROUND H3K9 methylation is one of the essential histone post-translational modifications for heterochromatin formation and transcriptional repression. Recently, several studies have demonstrated that H3K9 methylation negatively regulates the type I interferon response. RESULTS We report the application of EHMT1 and EHMT2 specific chemical inhibitors to sensitize CML cell lines to interfer...

متن کامل

Bone morphogenetic protein-4 mediates cardiac hypertrophy, apoptosis, and fibrosis in experimentally pathological cardiac hypertrophy.

Identifying the key factor mediating pathological cardiac hypertrophy is critically important for developing the strategy to protect against heart failure. Bone morphogenetic protein-4 (BMP4) is a mechanosensitive and proinflammatory gene. In this study, we investigated the role of BMP4 in cardiac hypertrophy, apoptosis, and fibrosis in experimentally pathological cardiac hypertrophy. The in vi...

متن کامل

Nrf2 protects against maladaptive cardiac responses to hemodynamic stress.

BACKGROUND Reactive oxygen species (ROS) play an important role in the maintenance of cardiovascular homeostasis. The present study sought to determine whether nuclear factor erythroid-2 related factor 2 (Nrf2), a master gene of the endogenous antioxidant defense system, is a critical regulator of the cardiac hypertrophic response to pathological stress. METHODS AND RESULTS Cardiac hypertroph...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of clinical investigation

دوره 127 1  شماره 

صفحات  -

تاریخ انتشار 2017