Rapid formation of the stable tyrosyl radical in photosystem II.

نویسندگان

  • P Faller
  • R J Debus
  • K Brettel
  • M Sugiura
  • A W Rutherford
  • A Boussac
چکیده

Two symmetrically positioned redox active tyrosine residues are present in the photosystem II (PSII) reaction center. One of them, TyrZ, is oxidized in the ns-micros time scale by P680+ and reduced rapidly (micros to ms) by electrons from the Mn complex. The other one, TyrD, is stable in its oxidized form and seems to play no direct role in enzyme function. Here, we have studied electron donation from these tyrosines to the chlorophyll cation (P680+) in Mn-depleted PSII from plants and cyanobacteria. In particular, a mutant lacking TyrZ was used to investigate electron donation from TyrD. By using EPR and time-resolved absorption spectroscopy, we show that reduced TyrD is capable of donating an electron to P680+ with t1/2 approximately equal to 190 ns at pH 8.5 in approximately half of the centers. This rate is approximately 10(5) times faster than was previously thought and similar to the TyrZ donation rate in Mn-depleted wild-type PSII (pH 8.5). Some earlier arguments put forward to rationalize the supposedly slow electron donation from TyrD (compared with that from TyrZ) can be reassessed. At pH 6.5, TyrZ (t1/2 = 2-10 micros) donates much faster to P680+ than does TyrD (t1/2 > 150 micros). These different rates may reflect the different fates of the proton released from the respective tyrosines upon oxidation. The rapid rate of electron donation from TyrD requires at least partial localization of P680+ on the chlorophyll (PD2) that is located on the D2 side of the reaction center.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tyrosine iminoxyl radical formation from tyrosyl radical/nitric oxide and nitrosotyrosine.

The quenching of the Y(D)(.) tyrosyl radical in photosystem II by nitric oxide was reported to result from the formation of a weak tyrosyl radical-nitric oxide complex (Petrouleas, V., and Diner, B. A. (1990) Biochim. Biophys. Acta 1015, 131-140). This radical/radical reaction is expected to generate an electron spin resonance (ESR)-silent 3-nitrosocyclohexadienone species that can reversibly r...

متن کامل

A metalloradical mechanism for the generation of oxygen from water in photosynthesis.

In plants and algae, photosystem II uses light energy to oxidize water to oxygen at a metalloradical site that comprises a tetranuclear manganese cluster and a tyrosyl radical. A model is proposed whereby the tyrosyl radical functions by abstracting hydrogen atoms from substrate water bound as terminal ligands to two of the four manganese ions. Molecular oxygen is produced in the final step in ...

متن کامل

Spectroscopic properties of tyrosyl radicals in dipeptides.

Redox-active tyrosine residues play important roles in long-distance electron reactions in enzymes, including prostaglandin H synthase, galactose oxidase, ribonucleotide reductase, and photosystem II. Magnetic resonance and vibrational spectroscopy provide methods with which to study the structures of redox-active amino acids in proteins. In this report, ultraviolet photolysis was used to gener...

متن کامل

Density functional calculations modelling tyrosine oxidation in oxygenic photosynthetic electron transfer.

Hybrid density functional calculations are used to model tyrosine oxidation during electron transfer reactions of photosystem II. The predicted frequency values for the 7a and deltaCOH modes of the reduced form and the 7a mode of the oxidised radical form are in excellent agreement with experimental data obtained for Mn and Ca depleted systems by Hienerwadel et al. [Biochemistry 36 (1997) 15447...

متن کامل

Tyrosyl free radical formation in the small subunit of mouse ribonucleotide reductase.

Each R2 subunit of mammalian ribonucleotide reductase contains a pair of high spin ferric ions and a tyrosyl free radical essential for activity. To study the mechanism of tyrosyl radical formation, substoichiometric amounts of Fe(II) were added to recombinant mouse R2 apoprotein under strictly anaerobic conditions and then the solution was exposed to air. Low temperature EPR spectroscopy showe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 98 25  شماره 

صفحات  -

تاریخ انتشار 2001