Sepiapterin enhances angiogenesis and functional recovery in mice after myocardial infarction.
نویسندگان
چکیده
Uncoupling of nitric oxide synthase (NOS) has been implicated in left ventricular (LV) remodeling and dysfunction after myocardial infarction (MI). We hypothesized that inducible NOS (iNOS) plays a crucial role in LV remodeling after MI, depending on its coupling status. MI was created in wild-type, iNOS-knockout (iNOS(-/-)), endothelial NOS-knockout (eNOS(-/-)), and neuronal NOS-knockout (nNOS(-/-)) mice. iNOS and nNOS expressions were increased after MI associated with an increase in nitrotyrosine formation. The area of myocardial fibrosis and LV end-diastolic volume and ejection fraction were more deteriorated in eNOS(-/-) mice compared with other genotypes of mice 4 wk after MI. The expression of GTP cyclohydrolase was reduced, and tetrahydrobiopterin (BH(4)) was depleted in the heart after MI. Oral administration of sepiapterin after MI increased dihydrobiopterin (BH(2)), BH(4), and BH(4)-to-BH(2) ratio in the infarcted but not sham-operated heart. The increase in BH(4)-to-BH(2) ratio was associated with inhibition of nitrotyrosine formation and an increase in nitrite plus nitrate. However, this inhibition of NOS uncoupling was blunted in iNOS(-/-) mice. Sepiapterin increased capillary density and prevented LV remodeling and dysfunction after MI in wild-type, eNOS(-/-), and nNOS(-/-) but not iNOS(-/-) mice. N(ω)-nitro-L-arginine methyl ester abrogated sepiapterin-induced increase in nitrite plus nitrate and angiogenesis and blocked the beneficial effects of sepiapterin on LV remodeling and function. These results suggest that sepiapterin enhances angiogenesis and functional recovery after MI by activating the salvage pathway for BH(4) synthesis and increasing bioavailable nitric oxide predominantly derived from iNOS.
منابع مشابه
Molecular Study of Vascular Endothelial Growth Factor Gene in Iranian Patients after Myocardial Infarction
Background: Stimulation of collateral artery growth (arteriogenesis) and/or capillary network growth (angiogenesis) would be beneficial to the patients with myocardial infarction. To understand the central role of vascular endothelial growth factor (VEGF) in biological angiogenesis, we performed molecular analysis of the VEGF gene in patients afflicted with acute myocardial infarction (AMI). Me...
متن کاملTPPU enhanced exercise‐induced epoxyeicosatrienoic acid concentrations to exert cardioprotection in mice after myocardial infarction
Exercise training (ET) is a safe and efficacious therapeutic approach for myocardial infarction (MI). Given the numerous benefits of exercise, exercise-induced mediators may be promising treatment targets for MI. C57BL/6 mice were fed 1-trifluoromethoxyphenyl-3-(1-propionylpiperidine-4-yl) urea (TPPU), a novel soluble epoxide hydrolase inhibitor (sEHI), to increase epoxyeicosatrienoic acid (EET...
متن کاملSirt3 is essential for apelin-induced angiogenesis in post-myocardial infarction of diabetes
Heart failure following myocardial infarction (MI) is the leading cause of death in diabetic patients. Angiogenesis contributes to cardiac repair and functional recovery in post-MI. Our previous study shows that apelin (APLN) increases Sirtuin 3 (Sirt3) expression and ameliorates diabetic cardiomyopathy. In this study, we further investigated the direct role of Sirt3 in APLN-induced angiogenesi...
متن کاملHigh-mobility group box 1 restores cardiac function after myocardial infarction in transgenic mice.
AIMS High-mobility group box 1 (HMGB1) is a nuclear DNA-binding protein and is released from necrotic cells, inducing inflammatory responses and promoting tissue repair and angiogenesis. To test the hypothesis that HMGB1 enhances angiogenesis and restores cardiac function after myocardial infarction (MI), we generated transgenic mice with cardiac-specific overexpression of HMGB1 (HMGB1-Tg) usin...
متن کاملCHIP enhances angiogenesis and restores cardiac function after infarction in transgenic mice.
BACKGROUND Carboxyl terminus of Hsp70-interacting protein (CHIP) is a chaperone/ubiquitin ligase that plays an important role in stress-induced apoptosis. However, the effect of CHIP on angiogenesis, cardiac function and survival 4 weeks after myocardial infarction (MI) remain to be explored. METHODS Wild-type (WT) and transgenic mice (TG) with cardiac-specific overexpression of CHIP were use...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Heart and circulatory physiology
دوره 301 5 شماره
صفحات -
تاریخ انتشار 2011