Fully nonlinear inversion of fundamental mode surface waves for a global crustal model

نویسندگان

  • U. Meier
  • A. Curtis
  • J. Trampert
چکیده

[1] We use neural networks to find 1-dimensional marginal probability density functions (pdfs) of global crustal parameters. The information content of the full posterior and prior pdfs can quantify the extent to which a parameter is constrained by the data. We inverted fundamental mode Love and Rayleigh wave phase and group velocity maps for pdfs of crustal thickness and independently of vertically averaged crustal shear wave velocity. Using surface wave data with periods T > 35 s for phase velocities and T > 18 s for group velocities, Moho depth and vertically averaged shear wave velocity of continental crust are well constrained, but vertically averaged shear wave velocity of oceanic crust is not resolvable. The latter is a priori constrained by CRUST2.0. We show that the resulting model allows to compute global crustal corrections for surface wave tomography for periods T > 50 s for phase velocities and T > 60 s for group velocities. Citation: Meier, U., A. Curtis, and J. Trampert (2007), Fully nonlinear inversion of fundamental mode surface waves for a global crustal model, Geophys. Res. Lett., 34, L16304, doi:10.1029/2007GL030989.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonperturbational surface-wave inversion: A Dix-type relation for surface waves

We extend the approach underlying the well-known Dix equation in reflection seismology to surface waves. Within the context of surface wave inversion, the Dix-type relation we derive for surface waves allows accurate depth profiles of shear-wave velocity to be constructed directly from phase velocity data, in contrast to perturbational methods. The depth profiles can subsequently be used as an ...

متن کامل

Global crustal thickness from neural network inversion of surface wave data

S U M M A R Y We present a neural network approach to invert surface wave data for a global model of crustal thickness with corresponding uncertainties. We model the a posteriori probability distribution of Moho depth as a mixture of Gaussians and let the various parameters of the mixture model be given by the outputs of a conventional neural network. We show how such a network can be trained o...

متن کامل

Surface wave sensitivity: mode summation versus adjoint SEM

S U M M A R Y We compare finite-frequency phase and amplitude sensitivity kernels calculated based on frequency-domain surface wave mode summation and a time-domain adjoint method. The adjoint calculations involve a forward wavefield generated by an earthquake and an adjoint wavefield generated at a seismic receiver. We determine adjoint sources corresponding to frequency-dependent phase and am...

متن کامل

Non-linear waveform inversion for surface waves with a neighbourhood algorithm—application to multimode dispersion measurements

S U M M A R Y A new technique for multimode dispersion measurement has been developed by employing fully non-linear waveform inversion for a path-specific 1-D profile using a neighbourhood algorithm (NA). One-dimensional models derived from waveform inversion are quite sensitive to the model parametrization and the reference model used to start the inversion. With different approaches to the pa...

متن کامل

Global anisotropic phase velocity maps for higher mode Love and Rayleigh waves

S U M M A R Y It is well established that the Earth’s uppermost mantle is anisotropic, but there are no clear observations of anisotropy in the deeper parts of the mantle. Surface waves are well suited to observe anisotropy since they carry information about both radial and azimuthal anisotropy. Fundamental mode surface waves, for commonly used periods up to 200 s, are sensitive to structure in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007