Video saliency detection by spatio-temporal sampling and sparse matrix decomposition

نویسندگان

  • Yunfeng Pan
  • Qiuping Jiang
  • Zhutuan Li
  • Feng Shao
چکیده

In this paper, we present a video saliency detection method by spatio-temporal sampling and sparse matrix decomposition. In the method, we sample the input video sequence into three planes: X-T slice plane, YT slice plane, and X-Y slice plane. Then, motion saliency map is extracted from the X-T and Y-T slices, and static saliency map is extracted from the X-Y slices by low-rank matrix decomposition. Finally, these maps are retransformed into the X-Y image domain and combined with central bias prior to obtain the video saliency maps. Extensive results on ASCMN dataset demonstrate that the proposed video saliency model can achieve higher subjective and objective performances. Key-Words: saliency detection, spatio-temporal sampling, sparse matrix decomposition, motion saliency, static saliency

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Compressed-Sampling-Based Image Saliency Detection in the Wavelet Domain

When watching natural scenes, an overwhelming amount of information is delivered to the Human Visual System (HVS). The optic nerve is estimated to receive around 108 bits of information a second. This large amount of information can’t be processed right away through our neural system. Visual attention mechanism enables HVS to spend neural resources efficiently, only on the selected parts of the...

متن کامل

An Efficient Dense and Scale-Invariant Spatio-Temporal Interest Point Detector

Over the years, several spatio-temporal interest point detectors have been proposed. While some detectors can only extract a sparse set of scaleinvariant features, others allow for the detection of a larger amount of features at user-defined scales. This paper presents for the first time spatio-temporal interest points that are at the same time scale-invariant (both spatially and temporally) an...

متن کامل

Object Movement Identification via Sparse Representation

Object Movement Identification from videos is very challenging, and has got numerous applications in sports evaluation, video surveillance, elder/child care, etc. In thisresearch, a model using sparse representation is presented for the human activity detection from the video data. This is done using a linear combination of atoms from a dictionary and a sparse coefficient matrix. The dictionary...

متن کامل

Perception-oriented video saliency detection via spatio-temporal attention analysis

Human visual system actively seeks salient regions and movements in video sequences to reduce the search effort. Computational visual saliency detection model provides important information for semantic understanding in many real world applications. In this paper, we propose a novel perception-oriented video saliency detection model to detect the attended regions for both interesting objects an...

متن کامل

Action recognition using global spatio-temporal features derived from sparse representations

Recognizing actions is one of the important challenges in computer vision with respect to video data, with applications to surveillance, diagnostics of mental disorders, and video retrieval. Compared to other data modalities such as documents and images, processing video data demands orders of magnitude higher computational and storage resources. One way to alleviate this difficulty is to focus...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014