Stable Signatures for Dynamic Metric Spaces via Zigzag Persistent Homology

نویسندگان

  • Woojin Kim
  • Facundo Mémoli
چکیده

When studying flocking/swarming behaviors in animals one is interested in quantifying and comparing the dynamics of the clustering induced by the coalescence and disbanding of animals in different groups. Motivated by this, we study the problem of obtaining persistent homology based summaries of time-dependent metric data. Given a finite dynamic metric space (DMS), we construct the zigzag simplicial filtration arising from applying the Rips simplicial complex construction (with a fixed scale parameter) to this finite DMS. Upon passing to 0-th homology with field coefficients, we obtain a zigzag persistence module and, based on standard results, we in turn obtain a persistence diagram or barcode from this zigzag persistence module. We prove that these barcodes are stable under perturbations in the input DMS. In order to formalize the notion of perturbation we introduce a suitable distance between DMSs and we then prove that the value of this distance between any two DMSs admits as a lower bound the bottleneck distance between the Rips barcodes associated to each of two input DMSs. This lower bound can be computed in polynomial time from the DMS inputs. Along the way, we propose a summarization of dynamic metric spaces that captures their time-dependent clustering features which we call formigrams. These set-valued functions generalize the notion of dendrogram, a prevalent tool for hierarchical clustering. In order to elucidate the relationship between our distance between two dynamic metric spaces and the bottleneck distance between their Rips zigzag barcodes, we exploit recent advances in the stability of zigzag persistence (due to Botnan and Lesnick). By providing explicit constructions, we prove that for each integer k ≥ 1 there exist pairs of DMSs at finite interleaving distance whose k-th persistent homology barcodes are at infinite barcode distance. ∗This work was partially supported by NSF grants IIS-1422400 and CCF-1526513. 1 ar X iv :1 71 2. 04 06 4v 1 [ m at h. A T ] 1 1 D ec 2 01 7

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Zigzag Persistence

We describe a new methodology for studying persistence of topological features across a family of spaces or point-cloud data sets, called zigzag persistence. Building on classical results about quiver representations, zigzag persistence generalises the highly successful theory of persistent homology and addresses several situations which are not covered by that theory. In this paper we develop ...

متن کامل

Adaptive tracking of representative cycles in regular and zigzag persistent homology

Persistent homology and zigzag persistent homology are techniques which track the homology over a sequence of spaces, outputting a set of intervals corresponding to birth and death times of homological features in the sequence. This paper presents a method for choosing a homology class to correspond to each of the intervals at each time point. For each homology class a specific representative c...

متن کامل

Persistent homology for metric measure spaces, and robust statistics for hypothesis testing and confidence intervals

We study distributions of persistent homology barcodes associated to taking subsamples of a fixed size from metric measure spaces. We show that such distributions provide robust invariants of metric measure spaces, and illustrate their use in hypothesis testing and providing confidence intervals for topological data analysis.

متن کامل

Robust Statistics, Hypothesis Testing, and Confidence Intervals for Persistent Homology on Metric Measure Spaces

We study distributions of persistent homology barcodes associated to taking subsamples of a fixed size from metric measure spaces. We show that such distributions provide robust invariants of metric measure spaces, and illustrate their use in hypothesis testing and providing confidence intervals for topological data analysis.

متن کامل

Zigzag Persistence via Reflections and Transpositions

We introduce a new algorithm for computing zigzag persistence, designed in the same spirit as the standard persistence algorithm. Our algorithm reduces a single matrix, maintains an explicit set of chains encoding the persistent homology of the current zigzag, and updates it under simplex insertions and removals. The total worst-case running time matches the usual cubic bound. A noticeable diff...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1712.04064  شماره 

صفحات  -

تاریخ انتشار 2017