A fast finite difference method for biharmonic equations on irregular domains and its application to an incompressible Stokes flow
نویسندگان
چکیده
Biharmonic equations have many applications, especially in fluid and solid mechanics, but difficult to solve due to the fourth order derivatives in the differential equation. In this paper a fast second order accurate algorithm based on a finite difference discretization and a Cartesian grid is developed for two dimensional biharmonic equations on irregular domains with essential boundary conditions. The irregular domain is embedded into a rectangular region and the biharmonic equation is decoupled to two Poisson equations. An auxiliary unknown quantity ∆u along the boundary is introduced so that fast Poisson solvers on irregular domains can be used. Non-trivial numerical example show the efficiency of the proposed method. The number of iterations of the method is independent of the mesh size. Another key to the method is a new interpolation scheme to evaluate the residual of the Schur complement system. The new biharmonic solver has been applied to solve the incompressible Stokes flow on an irregular domain.
منابع مشابه
A fast finite difference method for biharmonic equations on irregular domains
Biharmonic equations have many applications, especially in fluid and solid mechanics, but difficult to solve due to the fourth order derivatives in the differential equation. In this paper a fast second order accurate algorithm based on a finite difference discretization and a Cartesian grid is developed for two dimensional biharmonic equations on irregular domains with essential boundary condi...
متن کاملFast direct solver for the biharmonic equation on a disk and its application to incompressible flows
We develop a simple and efficient FFT-based fast direct solver for the biharmonic equation on a disk. The biharmonic equation is split into a coupled system of harmonic problems. We first use the truncated Fourier series expansion to derive a set of coupled singular ODEs, then we solve those singular equations by second-order finite difference discretizations. Using a radial grid with shifting ...
متن کاملA semi-implicit augmented IIM for Navier-Stokes equations with open and traction boundary conditions
In this paper, a new Navier-Stokes solver based on a finite difference approximation is proposed to solve incompressible flows on irregular domains with open and traction boundary conditions, which can be applied to simulations of fluid structure interaction, implicit solvent model for biomolecular applications and other free boundary or interface problems. For this type of problem, the project...
متن کاملA Fast Finite Difference Method for Solving Navier-stokes Equations on Irregular Domains
A fast finite difference method is proposed to solve the incompressible Navier-Stokes equations defined on a general domain. The method is based on the vorticity stream-function formulation and a fast Poisson solver defined on a general domain using the immersed interface method. The key to the new method is the fast Poisson solver for general domains and the interpolation scheme for the bounda...
متن کاملAn Enhanced Flux Treatment in Solving Incompressible Flow in a Forward-Facing Step
The aim of this paper is to give a detailed effect of several parameters such as step height, Reynolds number, contraction ratio, and temperature difference between the entrance and solid boundaries, of a forward-facing step. An accurate length of separation and reattachment zones are achieved. A finite-volume method (FVM) has been developed to study incompressible flow in a forward-facing step...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Adv. Comput. Math.
دوره 29 شماره
صفحات -
تاریخ انتشار 2008