Electronic signatures of large amplitude motions: dipole moments of vibrationally excited local-bend and local-stretch states of S0 acetylene.

نویسندگان

  • Bryan M Wong
  • Adam H Steeves
  • Robert W Field
چکیده

A one-dimensional local bend model is used to describe the variation of electronic properties of acetylene in vibrational levels that embody large amplitude local motions on the S0 potential energy surface. Calculations performed at the CCSD(T) and MR-AQCC levels of theory predict an approximately linear dependence of the dipole moment on the number of quanta in either the local bending or local stretching excitation. In the local mode limit, one quantum of stretching excitation in one CH bond leads to an increase of 0.025 D in the dipole moment, and one quantum of bending vibration in the CCH angle leads to an increase of 0.068 D. The use of a one-dimensional model for the local bend is justified by comparison to the well-established polyad model which reveals a decoupling of the large amplitude bending from other degrees of freedom in the range of Nbend = 14-22. We find that the same one-dimensional large amplitude bending motion emerges from two profoundly different representations, a one-dimensional cut through an ab initio, seven-dimensional Hamiltonian and the three-dimensional (l = 0) pure-bending experimentally parametrized spectroscopic Hamiltonian.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Microscopic Parameters in the Excited State of Toluene and Some of Its Haloderavatives

The Ultraviolet-visible (UV) spectra of toluene, ortho-bromo and para-bromo toluene in different solvents have been studied. The electric dipole moments and polarizabilities in the molecular excited electronic states were determined. It was found that the electric dipole moments for the excited states (µ*) and the ground states (µ) of these compounds are equal, and the change in dipole moment i...

متن کامل

Quantum Chemistry for Spectroscopy – A Tale of Three Spins ( S = 0 ,

Three special topics in the field of molecular spectrocopy are investigated using a variety of computational techniques. First, large-amplitude vibrational motions on ground-state singlet (S0) potential energy surfaces are analyzed for both the acetylene/vinylidene and the HCN/HNC isomerization systems. Electronic properties such as electric dipole moments and nuclear quadrupole coupling consta...

متن کامل

Dipole moment analysis of excited van der Waals vibrational states of ArH35Cl

The far-infrared laser electric resonance spectra of the prototypical atom-diatom complex ArH3%Z1 are analyzed using improved zero-field molecular constants, yielding accurate permanent and transition dipole moments for the three lowest excited van der Waals vibrational states. The constants are obtained from a multistate fit to previous microwave, far-infrared laser electric resonance, and far...

متن کامل

Excitonic splitting and vibronic coupling in 1,2-diphenoxyethane: conformation-specific effects in the weak coupling limit.

Vibrationally and rotationally resolved electronic spectra of 1,2-diphenoxyethane (C6H5-O-CH2-CH2-O-C6H5, DPOE) are reported for the isolated molecule under jet-cooled conditions. The spectra demonstrate that the two excited surfaces are within a few cm(-1) of one another over significant regions of the torsional potential energy surfaces that modulate the position and orientation of the two ar...

متن کامل

Mode selective photodissociation dynamics in V+(OCO).

The electrostatic V+(OCO) complex has a vibrationally resolved photodissociation spectrum in the visible. Photodissociation produces V+ + CO2 (nonreactive pathway) and VO+ +CO (reactive pathway). Production of VO+ is energetically favored, but spin forbidden. One-photon dissociation studies confirm mode selectivity observed by Lessen et al. [J. Chem. Phys. 95, 1414 (1991)]: excitation of one qu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The journal of physical chemistry. B

دوره 110 38  شماره 

صفحات  -

تاریخ انتشار 2006