Immune evasion of Moraxella catarrhalis involves ubiquitous surface protein A-dependent C3d binding.

نویسندگان

  • Teresia Hallström
  • Therése Nordström
  • Thuan Tong Tan
  • Taras Manolov
  • John D Lambris
  • David E Isenman
  • Peter F Zipfel
  • Anna M Blom
  • Kristian Riesbeck
چکیده

The complement system plays an important role in eliminating invading pathogens. Activation of complement results in C3b deposition (opsonization), phagocytosis, anaphylatoxin (C3a, C5a) release, and consequently cell lysis. Moraxella catarrhalis is a human respiratory pathogen commonly found in children with otitis media and in adults with chronic obstructive pulmonary disease. The species has evolved multiple complement evasion strategies, which among others involves the ubiquitous surface protein (Usp) family consisting of UspA1, A2, and A2 hybrid. In the present study, we found that the ability of M. catarrhalis to bind C3 correlated with UspA expression and that C3 binding contributed to serum resistance in a large number of clinical isolates. Recombinantly expressed UspA1 and A2 inhibit both the alternative and classical pathways, C3b deposition, and C3a generation when bound to the C3 molecule. We also revealed that the M. catarrhalis UspA-binding domain on C3b was located to C3d and that the major bacterial C3d-binding domains were within UspA1(299-452) and UspA2(165-318). The interaction with C3 was not species specific since UspA-expressing M. catarrhalis also bound mouse C3 that resulted in inhibition of the alternative pathway of mouse complement. Taken together, the binding of C3 to UspAs is an efficient strategy of Moraxella to block the activation of complement and to inhibit C3a-mediated inflammation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ionic binding of C3 to the human pathogen Moraxella catarrhalis is a unique mechanism for combating innate immunity.

Moraxella catarrhalis ubiquitous surface proteins A1 and A2 (UspA1/A2) interfere with the classical pathway of the complement system by binding C4b-binding protein. In this study we demonstrate that M. catarrhalis UspA1 and A2 noncovalently and in a dose-dependent manner bind both the third component of complement (C3) from EDTA-treated serum and methylamine-treated C3. In contrast, related Mor...

متن کامل

The emerging pathogen Moraxella catarrhalis interacts with complement inhibitor C4b binding protein through ubiquitous surface proteins A1 and A2.

Moraxella catarrhalis ubiquitous surface protein A2 (UspA2) mediates resistance to the bactericidal activity of normal human serum. In this study, an interaction between the complement fluid phase regulator of the classical pathway, C4b binding protein (C4BP), and M. catarrhalis mutants lacking UspA1 and/or UspA2 was analyzed by flow cytometry and a RIA. Two clinical isolates of M. catarrhalis ...

متن کامل

MID and UspA1/A2 of the human respiratory pathogen Moraxella catarrhalis, and interactions with the human host as basis for vaccine development.

Moraxella catarrhalis IgD-binding protein MID is a 200 kDa autotransporter protein that exists as a oligomer and is governed at the transcriptional level. The majority of M. catarrhalis clinical isolates expresses MID. Two functional domains have been attributed to MID; MID764-913 functions as an adhesin and promotes the bacteria to attach to epithelial cells, whereas the IgD-binding domain is ...

متن کامل

Review MID and UspA1/A2 of the human respiratory pathogen Moraxella catarrhalis, and interactions with the human host as basis for vaccine development*

Moraxella catarrhalis IgD-binding protein MID is a 200 kDa autotransporter protein that exists as a oligomer and is governed at the transcriptional level. The majority of M. catarrhalis clinical isolates expresses MID. Two functional domains have been attributed to MID; MID764-913 functions as an adhesin and promotes the bacteria to attach to epithelial cells, whereas the IgD-binding domain is ...

متن کامل

The respiratory pathogen Moraxella catarrhalis adheres to epithelial cells by interacting with fibronectin through ubiquitous surface proteins A1 and A2.

Moraxella catarrhalis ubiquitous surface protein (Usp) A1 has been reported to bind fibronectin and is involved in adherence. In this study, using M. catarrhalis mutants derived from clinical isolates, we show that both UspA1 and UspA2 bind fibronectin. Recombinant truncated UspA1/A2 proteins, together with smaller fragments spanning the entire molecule, were tested for binding to fibronectin. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of immunology

دوره 186 5  شماره 

صفحات  -

تاریخ انتشار 2011