Role of N-linked glycosylation in the secretion and enzymatic properties of Rhizopus chinensis lipase expressed in Pichia pastoris
نویسندگان
چکیده
BACKGROUND The methylotrophic yeast, Pichia pastoris, is widely used as a useful experimental tool in protein engineering and production. It is common for proteins expressed in P. pastoris to exhibit N-glycosylation. In recent years, glycosylation studies in P. pastoris have attracted increasing attention from scholars. Rhizopus chinensis lipase (RCL) is one of the most important industrial lipases, and it has four potential N-linked glycosylation sites. The aim of the present study was to determine whether RCL undergoes asparagine-linked (N-linked) glycosylation and to examine the role of this modification in RCL expression and function. RESULTS In this study, we demonstrated that RCL expressed in Pichia pastoris was N-glycosylated at the sites N-14, N-48 and N-60. The majority of the sites N-14 and N-60 were glycosylated, but the glycosylation degree of the site N-48 was only a very small portion. The glycan on N-60 played a key role in the expression and secretion of RCL. RT-PCR results showed that the mRNA level of proRCLCN60Q remained unchanged even though the protein secretion was hampered. Although the N-glycan on N-14 had no effect on the secretion of RCL, this glycan was beneficial for the lipase catalytic activity. On the other hand, the little amount of N-glycan on N-48 had no effect both on the secretion and activity of RCL in P. pastoris. Moreover, the thermostability analysis of RCL revealed that the lipase with more N-glycan was more thermostable. CONCLUSIONS RCL was N-glycosylated when expressed in P. pastoris. The N-glycans of RCL on the different sites had different functions for the secretion and enzymatic properties of the lipase. Our report may also provide theoretical support for the improvement of enzyme expression and stability based on the N-linked glycosylation modification to meet the future needs of the biotechnological industry.
منابع مشابه
Enhanced thermostability of a Rhizopus chinensis lipase by in vivo recombination in Pichia pastoris
BACKGROUND Lipase from Rhizopus chinensis is a versatile biocatalyst for various bioconversions and has been expressed at high-level in Pichia pastoris. However, the use of R. chinensis lipase in industrial applications is restricted by its low thermostability. Directed evolution has been proven to be a powerful and efficient protein engineering tool for improvement of biocatalysts. The present...
متن کاملHigh-level expression and characterization of a chimeric lipase from Rhizopus oryzae for biodiesel production
BACKGROUND Production of biodiesel from non-edible oils is receiving increasing attention. Tung oil, called "China wood oil" is one kind of promising non-edible biodiesel oil in China. To our knowledge, tung oil has not been used to produce biodiesel by enzymatic method. The enzymatic production of biodiesel has been investigated extensively by using Rhizopus oryzae lipase as catalyst. However,...
متن کاملHigh-Level Expression of Pro-Form Lipase from Rhizopus oryzae in Pichia pastoris and Its Purification and Characterization
A gene encoding Rhizopus oryzae lipase containing prosequence (ProROL) was cloned into the pPICZαA and electrotransformed into the Pichia pastoris X-33 strain. The lipase was functionally expressed and secreted in Pichia pastoris with a molecular weight of 35 kDa. The maximum lipase activity of recombinant lipase (rProROL) was 21,000 U/mL, which was obtained in a fed-batch cultivation after 168...
متن کاملP-198: Utilization of Pichia Pastoris Secretion System for Expression of Equine Follicle Stimulating Hormone
Background: Equine follicle stimulating hormone (eFSH) is a pituitary heterodimeric glycoprotein consists of noncovalently linked of generic alpha subunit and a hormone specific beta subunit. The molecular weights of the subunits are similar and about 16 KD. In general, FSH plays a key role in controlling vertebrate gonadal functions. In female mammals, ovarian maturation and follicular growth ...
متن کاملEnzymatic properties of native and deglycosylated hybrid aspen (Populus tremulaxtremuloides) xyloglucan endotransglycosylase 16A expressed in Pichia pastoris.
The cDNA encoding a xyloglucan endotransglycosylase, PttXET16A, from hybrid aspen (Populus tremulaxtremuloides) has been isolated from an expressed sequence tag library and expressed in the methylotrophic yeast Pichia pastoris. Sequence analysis indicated a high degree of similarity with other proteins in the XTH (xyloglucan transglycosylase/hydrolase) gene subfamily of GH16 (glycoside hydrolas...
متن کامل