Medium Amplitude Limit Cycles of Some Classes of Generalized Liénard Systems

نویسنده

  • Salomón Rebollo-Perdomo
چکیده

The bifurcation of limit cycles by perturbing a planar system which has a continuous family of cycles, i.e. periodic orbits, has been an intensively studied phenomenon; see for instance [13, 16, 2] and references therein. The simplest planar system having a continuous family of cycles is the linear center, and a special family of its perturbations is given by the generalized polynomial Liénard systems:

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The number of medium amplitude limit cycles of some generalized Liénard systems

We will consider two special families of polynomial perturbations of the linear center. For the resulting perturbed systems, which are generalized Liénard systems, we provide the exact upper bound for the number of limit cycles that bifurcate from the periodic orbits of the linear center.

متن کامل

On the Number of Limit Cycles for Discontinuous Generalized Liénard Polynomial Differential Systems

In this paper, we investigate the number of limit cycles for a class of discontinuous planar differential systems with multiple sectors separated by many rays originating from the origin. In each sector, it is a smooth generalized Liénard polynomial differential system x′ = −y + g1(x) + f1(x)y and y′ = x + g2(x) + f2(x)y, where fi(x) and gi(x) for i = 1, 2 are polynomials of variable x with any...

متن کامل

Generalized Liénard Equations, Cyclicity and Hopf–Takens Bifurcations

We investigate the bifurcation of small–amplitude limit cycles in generalized Liénard equations. We use the simplicity of the Liénard family, to illustrate the advantages of the approach based on Bautin ideals. Essentially, this Bautin ideal is generated by the so–called Lyapunov quantities, that are computed for generalized Liénard equations and used to detect the presence of a Hopf– Takens bi...

متن کامل

Limit cycles in generalized Liénard systems

This paper presents some new results which we obtained recently for the study of limit cycles of nonlinear dynamical systems. Particular attention is given to small limit cycles of generalized Liénard systems in the vicinity of the origin. New results for a number of cases of the Liénard systems are presented with the Hilbert number, b H ði; jÞ 1⁄4 b H ðj; iÞ, for j = 4, i = 10,11,12,13; j = 5,...

متن کامل

Limit Cycles in Two Types of Symmetric LiÉnard Systems

Liénard systems and their generalized forms are classical and important models of nonlinear oscillators, and have been widely studied by mathematicians and scientists. The main problem considered is the maximal number of limit cycles that the system can have. In this paper, two types of symmetric polynomial Liénard systems are investigated and the maximal number of limit cycles bifurcating from...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • I. J. Bifurcation and Chaos

دوره 25  شماره 

صفحات  -

تاریخ انتشار 2015