Proximity Graphs: E, Δ, Δ, Χ and Ω
نویسندگان
چکیده
Graph-theoretic properties of certain proximity graphs defined on planar point sets are investigated. We first consider some of the most common proximity graphs of the family of the Delaunay graph, and study their number of edges, minimum and maximum degree, clique number, and chromatic number. In the second part of the paper we focus on the higher order versions of some of these graphs and give bounds on the same properties.
منابع مشابه
The edge tenacity of a split graph
The edge tenacity Te(G) of a graph G is dened as:Te(G) = min {[|X|+τ(G-X)]/[ω(G-X)-1]|X ⊆ E(G) and ω(G-X) > 1} where the minimum is taken over every edge-cutset X that separates G into ω(G - X) components, and by τ(G - X) we denote the order of a largest component of G. The objective of this paper is to determine this quantity for split graphs. Let G = (Z; I; E) be a noncomplete connected split...
متن کاملClaw-free graphs, skeletal graphs, and a stronger conjecture on $ω$, $Δ$, and $χ$
The second author’s ω, ∆, χ conjecture proposes that every graph satisties χ ≤ d 1 2 (∆ + 1 + ω)e. In this paper we prove that the conjecture holds for all claw-free graphs. Our approach uses the structure theorem of Chudnovsky and Seymour. Along the way we discuss a stronger local conjecture, and prove that it holds for claw-free graphs with a three-colourable complement. To prove our results ...
متن کاملGraphs with χ=Δ Have Big Cliques
Brooks’ Theorem implies that if a graph has ∆ ≥ 3 and and χ > ∆, then ω = ∆+1. Borodin and Kostochka conjectured that if ∆ ≥ 9 and χ ≥ ∆, then ω ≥ ∆. We show that if ∆ ≥ 13 and χ ≥ ∆, then ω ≥ ∆ − 3. For a graph G, let H(G) denote the subgraph of G induced by vertices of degree ∆. We also show that if χ ≥ ∆, then ω ≥ ∆ or ω(H(G)) ≥ ∆− 5.
متن کاملOn (δ, χ)-Bounded Families of Graphs
A family F of graphs is said to be (δ, χ)-bounded if there exists a function f(x) satisfying f(x) → ∞ as x → ∞, such that for any graph G from the family, one has f(δ(G)) ≤ χ(G), where δ(G) and χ(G) denotes the minimum degree and chromatic number of G, respectively. Also for any set {H1,H2, . . . ,Hk} of graphs by Forb(H1,H2, . . . ,Hk) we mean the class of graphs that contain no Hi as an induc...
متن کاملA local strengthening of Reed's ω, Δ, χ conjecture for quasi-line graphs
Reed’s ω, ∆, χ conjecture proposes that every graph satisfies χ ≤ d 12 (∆ + 1 + ω)e; it is known to hold for all claw-free graphs. In this paper we consider a local strengthening of this conjecture. We prove the local strengthening for line graphs, then note that previous results immediately tell us that the local strengthening holds for all quasi-line graphs. Our proofs lead to polytime algori...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Int. J. Comput. Geometry Appl.
دوره 22 شماره
صفحات -
تاریخ انتشار 2012