Matrix output extension of the tensor network Kalman filter with an application in MIMO Volterra system identification

نویسندگان

  • Kim Batselier
  • Ngai Wong
چکیده

This article extends the tensor network Kalman filter to matrix outputs with an application in recursive identification of discrete-time nonlinear multiple-input-multiple-output (MIMO) Volterra systems. This extension completely supersedes previous work, where only l scalar outputs were considered. The Kalman tensor equations are modified to accommodate for matrix outputs and their implementation using tensor networks is discussed. The MIMO Volterra system identification application requires the conversion of the output model matrix with a row-wise Kronecker product structure into its corresponding tensor network, for which we propose an efficient algorithm. Numerical experiments demonstrate both the efficacy of the proposed matrix conversion algorithm and the improved convergence of the Volterra kernel estimates when using matrix outputs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Tensor Network Kalman filter with an application in recursive MIMO Volterra system identification

This article introduces a Tensor Network Kalman filter, which can estimate state vectors that are exponentially large without ever having to explicitly construct them. The Tensor Network Kalman filter also easily accommodates the case where several different state vectors need to be estimated simultaneously. The key lies in rewriting the standard Kalman equations as tensor equations and then im...

متن کامل

Identification of an Autonomous Underwater Vehicle Dynamic Using Extended Kalman Filter with ARMA Noise Model

In the procedure of designing an underwater vehicle or robot, its maneuverability and controllability must be simulated and tested, before the product is finalized for manufacturing. Since the hydrodynamic forces and moments highly affect the dynamic and maneuverability of the system, they must be estimated with a reasonable accuracy. In this study, hydrodynamic coefficients of an autonomous un...

متن کامل

Tensor Network alternating linear scheme for MIMO Volterra system identification

This article introduces two Tensor Train-based iterative algorithms for the identification of high order discrete-time nonlinear MIMO Volterra systems. The system identification problem is rewritten in terms of a Volterra tensor, which is never explicitly constructed, thus avoiding the curse of dimensionality. It is shown how each iteration of the two identification algorithms involves solving ...

متن کامل

Time Delay and Data Dropout Compensation in Networked Control Systems Using Extended Kalman Filter

In networked control systems, time delay and data dropout can degrade the performance of the control system and even destabilize the system. In the present paper, the Extended Kalman filter is employed to compensate the effects of time delay and data dropout in feedforward and feedback paths of networked control systems. In the proposed method, the extended Kalman filter is used as an observer ...

متن کامل

Identification of Multiple Input-multiple Output Non-linear System Cement Rotary Kiln using Stochastic Gradient-based Rough-neural Network

Because of the existing interactions among the variables of a multiple input-multiple output (MIMO) nonlinear system, its identification is a difficult task, particularly in the presence of uncertainties. Cement rotary kiln (CRK) is a MIMO nonlinear system in the cement factory with a complicated mechanism and uncertain disturbances. The identification of CRK is very important for different pur...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1708.05156  شماره 

صفحات  -

تاریخ انتشار 2017