Macroscopic Limits of Microscopic Models
نویسنده
چکیده
Many physical systems are comprised of several discrete elements, the equations of motion of each element being known. If the system has a large number of degrees of freedom, it may be possible to treat it as a continuous system. In this event, one might wish to derive the equations of motion of the continuous (macroscopic) system by taking a suitable limit of the equations governing the discrete (microscopic) system. The classical example of this involves a row of particles with each particle connected to its nearest neighbor by a linear spring, its continuum counterpart being a linearly elastic bar; see Figure 1. In a typical undergraduate engineering subject on, say Dynamics, the transition from a discrete system to a continuous system is usually carried out through a formal Taylor expansion of the terms of the discrete model about some reference configuration. The aim of this paper is to draw attention to the fact that a macroscopic model derived in this way should be examined critically in order to confirm that it provides a faithful representation of the underlying microscopic model. We use a specific (striking) example to make this point. In this example, a simple solution of the discrete model can be stable or unstable depending on the state of the system. However the corresponding solution of the continuous system is always unstable! We go on to show how the dispersion relations of the two models can be used to identify the source of the discrepancy and to suggest how one might modify the continuous model.
منابع مشابه
Simulation of Pedestrian Dynamics with Macroscopic and Microscopic Mathematical Models
Here, we collect two parts of a research project on the pedestrian flow modeling. Rapid growth in the volume of public transport and the need for its reasonable, efficient planning have made the description and modeling of transport and pedestrian behaviors as important research topics in the past twenty years. First, we present a macroscopic model for the pedestrian flow based on continuum mec...
متن کاملCellular Automata Simulation of a Bistable Reaction-Diffusion System: Microscopic and Macroscopic Approaches
The Cellular Automata method has been used to simulate the pattern formation of the Schlögl model as a bistable Reaction-Diffusion System. Both microscopic and macroscopic Cellular Automata approaches have been considered and two different methods for obtaining the probabilities in the microscopic approach have been mentioned. The results show the tendency of the system towards the more sta...
متن کاملA Microscopic Derivation of Macroscopic Sharp Interface Problems Involving Phase Transitions
Macroscopic free boundary problems involving phase transitions (e.g., the classical Stefan problem or its modifications) are derived in a unified way from a Hamiltonian based on a general set of microscopic interactions. A Hamiltonian of the form H=52x, x,J(x-x')q~(x)q)(x') leads to differential equations as a result of Fourier transforms. Expanding the Fourier transform of J in powers of q (th...
متن کاملA “v2-f Based” Macroscopic K-Ε Model for Turbulent Flow through Porous Media
In this paper a new macroscopic k-ε model is developed and validated for turbulent flow through porous media for a wide range of porosities. The morphology of porous media is simulated by a periodic array of square cylinders. In the first step, calculations based on microscopic v2 − f model are conducted using a Galerkin/Least-Squares finite element formulation, employing equalorder bilinear ve...
متن کاملMolecular Identification of Macroscopic And Microscopic Cysts of Sarcocystis in Sheep in North Khorasan Province, Iran
Sarcocystis is an obligatory intracellular protozoan parasite which can infect humans and animals. Sheep are intermediate hosts of four Sarcocystis species: Sarcocystis tenella, Sarcocystis gigantea, Sarcocystis arieticanis, and Sarcocystis medusiformision. The purpose of the study was to determine the molecular identification of the macroscopic and microscopic cysts of Sarcocystis in sh...
متن کاملComparison and Evaluation of Current Animal Models for Perineural Scar Formation in Rat
Objective (s): Scar formation in injured peripheral nerve bed causes several consequences which impede the process of nerve regeneration. Several animal models are used for scar induction in preclinical studies which target prevention and/or suppression of perineural scar. This study evaluates the translational capacity of four of physical injury models to induce scar formation aro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014