Transposon Dysregulation Modulates dWnt4 Signaling to Control Germline Stem Cell Differentiation in Drosophila
نویسندگان
چکیده
Germline stem cell (GSC) self-renewal and differentiation are required for the sustained production of gametes. GSC differentiation in Drosophila oogenesis requires expression of the histone methyltransferase dSETDB1 by the somatic niche, however its function in this process is unknown. Here, we show that dSETDB1 is required for the expression of a Wnt ligand, Drosophila Wingless type mouse mammary virus integration site number 4 (dWnt4) in the somatic niche. dWnt4 signaling acts on the somatic niche cells to facilitate their encapsulation of the GSC daughter, which serves as a differentiation cue. dSETDB1 is known to repress transposable elements (TEs) to maintain genome integrity. Unexpectedly, we found that independent upregulation of TEs also downregulated dWnt4, leading to GSC differentiation defects. This suggests that dWnt4 expression is sensitive to the presence of TEs. Together our results reveal a chromatin-transposon-Wnt signaling axis that regulates stem cell fate.
منابع مشابه
A switch in the mode of Wnt signaling orchestrates the formation of germline stem cell differentiation niche in Drosophila
Germline stem cell (GSC) self-renewal and differentiation into gametes is regulated by both intrinsic factors in the germ line as well as extrinsic factors from the surrounding somatic niche. dWnt4, in the escort cells of the adult somatic niche promotes GSC differentiation using the canonical β-catenin-dependent transcriptional pathway to regulate escort cell survival, adhesion to the germ lin...
متن کاملSoma influences GSC progeny differentiation via the cell adhesion-mediated steroid-let-7-Wingless signaling cascade that regulates chromatin dynamics
It is known that signaling from the germline stem cell niche is required to maintain germline stem cell identity in Drosophila. However, it is not clear whether the germline stem-cell daughters differentiate by default (because they are physically distant from the niche) or whether additional signaling is necessary to initiate the differentiation program. Previously, we showed that ecdysteroid ...
متن کاملMesenchymal Stem Cells: Signaling Pathways in Transdifferentiation Into Retinal Progenitor Cells
Several signaling pathways and transcription factors control the cell fate in its in vitro development and differentiation. The orchestrated use of these factors results in cell specification. In coculture methods, many of these factors secrete from host cells but control the process. Today, transcription factors required for retinal progenitor cells are well known, but the generation of these ...
متن کاملEnhancer of polycomb coordinates multiple signaling pathways to promote both cyst and germline stem cell differentiation in the Drosophila adult testis
Stem cells reside in a particular microenvironment known as a niche. The interaction between extrinsic cues originating from the niche and intrinsic factors in stem cells determines their identity and activity. Maintenance of stem cell identity and stem cell self-renewal are known to be controlled by chromatin factors. Herein, we use the Drosophila adult testis which has two adult stem cell lin...
متن کاملWnt Signaling in Stem Cell Maintenance and Differentiation in the Drosophila Germarium
Wnt signaling is a conserved regulator of stem cell behaviors, and the Drosophila germarium has been an important model tissue for the study of stem cell maintenance, differentiation, and proliferation. Here we review Wnt signaling in the germarium, which houses two distinct types of ovarian stem cells: the anteriorly located germline stem cells (GSCs), which give rise to oocytes; and the mid-p...
متن کامل