Hydrodynamics and microphase ordering in block copolymers: are hydrodynamics required for ordered phases with periodicity in more than one dimension?
نویسندگان
چکیده
We use Brownian dynamics (BD), molecular dynamics, and dissipative particle dynamics to study the phase behavior of diblock copolymer melts and to determine if hydrodynamics is required in the formation of phases with greater than one-dimensional periodicity. We present a phase diagram for diblock copolymers predicted by BD and provide a relationship between the inverse dimensionless temperature epsilon/k(B)T and the Flory-Huggins chi parameter, allowing for a quantitative comparison between methods and to mean field predictions. Our results concerning phase behavior are in good qualitative agreement with the theoretical predictions of Matsen and Bates [M. W. Matsen and F. S. Bates, Macromolecules 29, 1091 (1996)]; however, fluctuation effects arising from finite polymer lengths substantially alter the phase boundaries. Our results pertaining to the hydrodynamics are in contrast to earlier work by Groot et al. [R. D. Groot, T. J. Madden, and D. J. Tildesley, J. Chem. Phys. 110, 9739 (1999); D. Frenkel and B. Smit, Understanding Molecular Simulation, 2nd ed. (Academic, New York, 2001)]. In particular, we obtain the hexagonal ordered cylinder phase with BD, a method that does not include hydrodynamics.
منابع مشابه
Thermal Study on Phase Transitions of Block Copolymers by Mesoscopic Simulation
The block copolymers are an exceptional kind of macromolecules constituted by two or more blocks of different homopolymer chains linked by covalent bonds. These polymeric materials have received much attention over past few years due in large part to their ability to selfassemble in the melted state or in a selective solvent inside a variety of ordered phases or welldefined structures of high r...
متن کاملHydrodynamics and growth laws in lamellar ordering
Ordering of lamellar phases described by a free-energy functional with short-range interactions is numerically investigated in two dimensions by means of a pseudo-spectral method. The ordering process is found to depend on the fluid viscosity: it is arrested for large viscosity values and proceeds as a power law for small ones, with a crossover regime for intermediate values. At varying the fre...
متن کاملInsights into ordered microstructures and ordering mechanisms of ABC star terpolymers by integrating dynamic self-consistent field theory and variable cell shape methods.
A theoretical approach coupling dynamic self-consistent field (SCF) theory for inhomogeneous polymeric fluids and variable cell shape (VCS) method for automatically adjusting cell shape and size is developed to investigate ordered microstructures and the ordering mechanisms of block copolymer melts. Using this simulation method, we first re-examined the microphase separation of the simplest AB ...
متن کاملDiscovering new ordered phases of block copolymers
We propose a new and general method for discovering novel ordered phases of block copolymer melts. The method involves minimizing a free energy functional in an arbitrary unit cell with respect to the composition profile and the dimensions of the unit cell, without any prior assumption of the microphase symmetry. Varying the initial conditions allows to search for different stable and metastabl...
متن کاملHydrodynamics and mass transfer inthree-phase airlift reactors for activated Carbon and sludge filtration
A bioreactor refers to any manufactured or engineered device that supports a biologically active environment. These kinds of reactors are designed to treat wastewater treatment. Volumetric mass transfer coefficient and the effect of superficial gas velocity, as the most important operational factor on hydrodynamics, in three-phase airlift reactors are investigated in this study. The experiments...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of chemical physics
دوره 121 22 شماره
صفحات -
تاریخ انتشار 2004