Semiclassical Limit of the Nonlinear Schrödinger-Poisson Equation with Subcritical Initial Data

نویسندگان

  • Hailiang Liu
  • Eitan Tadmor
چکیده

We study the semi-classical limit of the nonlinear Schrödinger-Poisson (NLSP) equation for initial data of the WKB type. The semi-classical limit in this case is realized in terms of a density-velocity pair governed by the Euler-Poisson equations. Recently we have shown in [ELT, Indiana Univ. Math. J., 50 (2001), 109–157], that the isotropic Euler-Poisson equations admit a critical threshold phenomena, where initial data in the sub-critical regime give rise to globally smooth solutions. Consequently, we justify the semi-classical limit for sub-critical NLSP initial data and confirm the validity of the WKB method. AMS subject class: 35Q55, 35C20.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Semiclassical Limit for the Schrödinger-Poisson Equation in a Crystal

We give a mathematically rigorous theory for the limit from a weakly nonlinear Schrödinger equation with both periodic and nonperiodic potential to the semiclassical version of the Vlasov equation. To this end we perform simultaneously a classical limit (vanishing Planck constant) and a homogenization limit of the periodic structure (vanishing lattice length taken proportional to the Planck con...

متن کامل

A numerical study of the semi-classical limit of the focusing nonlinear Schrödinger equation

We study the solution of the focusing nonlinear Schrödinger equation in the semiclassical limit. Numerical solutions are presented for four different kinds of initial data, of which three are analytic and one is nonanalytic. We verify numerically the weak convergence of the oscillatory solution by examining the strong convergence of the spatial average of the solution.  2002 Elsevier Science B...

متن کامل

A second look at the Gaussian semiclassical soliton ensemble for the focusing nonlinear Schrödinger equation

We study the Gaussian semiclassical soliton ensemble, a collection of multisoliton solutions of the focusing nonlinear Schrödinger equation. The ensemble is generated by adding a particular asymptotically vanishing sequence of perturbations to Gaussian initial data. Recent results [Lee, Lyng, & Vankova (2012)] suggest that, remarkably, these perturbations—interlaced as they are with the integra...

متن کامل

The Vlasov-Poisson Equations as the Semiclassical Limit of the Schrödinger-Poisson Equations: A Numerical Study

In this paper, we numerically study the semiclassical limit of the SchrödingerPoisson equations as a selection principle for the weak solution of the VlasovPoisson in one space dimension. Our numerical results show that this limit gives the weak solution that agrees with the zero diffusion limit of the Fokker-Planck equation. We also numerically justify the multivalued solution given by a momen...

متن کامل

Wkb Analysis for Nonlinear Schrödinger Equations with Potential

We justify the WKB analysis for the semiclassical nonlinear Schrödinger equation with a subquadratic potential. This concerns subcritical, critical, and supercritical cases as far as the geometrical optics method is concerned. In the supercritical case, this extends a previous result by E. Grenier; we also have to restrict to nonlinearities which are defocusing and cubic at the origin, but besi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002