Adsorption of arsenic(III) and arsenic(V) from groundwater using natural siderite as the adsorbent.

نویسندگان

  • Huaming Guo
  • Doris Stüben
  • Zsolt Berner
چکیده

Batch and column tests were performed utilizing natural siderite to remove As(V) and As(III) from water. One hundred milligrams of siderite was reacted at room temperature for up to 8 days with 50 mL of 1000 microg/L As(V) or As(III) in 0.01 M NaCl. Arsenic concentration decreased exponentially with time, and pseudoequilibrium was attained in 3 days. The estimated adsorption capacities were 520 and 1040 microg/g for As(V) and As(III), respectively. Column studies show that effluent As was below 1.0 microg/L after a throughput of 26,000 pore volumes of 500 microg/L As water, corresponding to about 2000 microg/g of As load in the filter. Results of scanning electron microscopy (SEM) and transmission electron microscopy (TEM) reveal that high As retention capacity of the filter arose from coprecipitation of Fe oxides with As and subsequent adsorption of As on the fresh Fe oxides/hydroxides. Arsenic adsorption in the filter from As-spiked tap water was relatively lower than that from artificial As solution because high HCO(-)(3) concentration restrained siderite dissolution and thus suppressed production of the fresh Fe oxides on the siderite grains. The TCLP (toxicity characteristic leaching procedure) results suggest that these spent adsorbents were inert and could be landfilled.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modeling and Optimization of Arsenic (III) Removal from Aqueous Solutions by GFO Using Response Surface Methodology

Arsenic is a highly toxic element for human beings, which is generally found in groundwater. Dissolved Arsenic in water can be seen as As+3 and As+5 states. The adsorption process is one of the available methods to remove Arsenic from aqueous solutions. Thus, this papers aims at removing Arsenic (III) from aqueous solutions through adsorption on iron oxide granules. The relation among four inde...

متن کامل

Preparation and evaluation of iron-chitosan composites for removal of As(III) and As(V) from arsenic contaminated real life groundwater.

A study on the removal of arsenic from real life groundwater using iron-chitosan composites is presented. Removal of arsenic(III) and arsenic(V) was studied through adsorption at pH 7.0 under equilibrium and dynamic conditions. The equilibrium data were fitted to Langmuir adsorption models and the various model parameters were evaluated. The monolayer adsorption capacity from the Langmuir model...

متن کامل

Modeling and Optimization of Arsenic (III) Removal from Aqueous Solutions by GFO Using Response Surface Methodology

Arsenic is a highly toxic element for human beings, which is generally found in groundwater. Dissolved Arsenic in water can be seen as As+3 and As+5 states. The adsorption process is one of the available methods to remove Arsenic from aqueous solutions. Thus, this papers aims at removing Arsenic (III) from aqueous solutions through adsorption on iron oxide granules. The relation among four inde...

متن کامل

Arsenic Removal from Aqueous Solution Using Titanium Dioxide Nanoparticles (Anatase)

Background and Objectives: Groundwater sources, as strategic sources of water supply, are of particular importance for human beings. Arsenic is a toxic and carcinogenic contaminant that has been reported to be widely found in groundwater sources. In recent years, adsorption property of nanoparticles has been used to remove arsenic. The present study was performed with the aim of assessing the a...

متن کامل

Multivariate analysis of the heterogeneous geochemical processes controlling arsenic enrichment in a shallow groundwater system.

The effects of various geochemical processes on arsenic enrichment in a high-arsenic aquifer at Jianghan Plain in Central China were investigated using multivariate models developed from combined adaptive neuro-fuzzy inference system (ANFIS) and multiple linear regression (MLR). The results indicated that the optimum variable group for the AFNIS model consisted of bicarbonate, ammonium, phospho...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of colloid and interface science

دوره 315 1  شماره 

صفحات  -

تاریخ انتشار 2007