Proprioception in the cerebellum

نویسندگان

  • Matthieu P. Boisgontier
  • Stephan P. Swinnen
چکیده

Proprioception is the ability to interpret our musculo-skeletal state (e.g., position and movement) by processing information originating from our own body. While it is generally accepted that passive proprioception (i.e., proprioception in the absence of muscle contraction) is dependent only on the processing of peripheral inputs, the precise nature of the processes constituting active proprioception (i.e., proprioception with muscle contraction) is still not clear (Proske and Gandevia, 2012). Central to this knowledge gap is the difficulty in accurately determining the processes responsible for the improvement of proprioception in active compared to passive movements (e.g., Fuentes and Bastian, 2010). This improvement is assumed to potentially result from [1] enhanced peripheral muscle information (through gamma motoneurons of the muscle spindles), [2] the direct transmission of a copy of motor commands (i.e., efference copy) from motor to sensory processing areas, and/or [3] the involvement of predictive models through the cerebellum (Wolpert and Miall, 1996; Bhanpuri et al., 2012; Proske and Gandevia, 2012). Here, based on the results of Bhanpuri et al. (2013), we propose that cerebellar predictive models can fully account for the improvement of proprioception in active movements. We also describe the cellular arrangement that may underlie the involvement of predictive models in proprioception. In their recent study, Bhanpuri et al. (2013) tested proprioception in cerebellar patients and well matched controls. They measured perceptual thresholds of the dominant arm using an exoskeleton robot system in three proprioceptive tasks: passive, active (active-simple), and active with a complex pattern of resistive torque during forearm displacement making this displacement unpredictable (activecomplex). Based on Weber fractions, controls demonstrated better proprioception in the active-simple task compared to the passive (p < 0.005) and active-complex tasks (p < 0.022), which were not different from each other (p > 0.38). In contrast, no differences were found between any of the tasks in cerebellar patients (all p > 0.28), who performed worse than controls in the active-simple task (p < 0.03). The similar performance observed in the passive and active-complex task in controls reveals that the proprioceptive benefit usually observed in active compared to passive conditions is neither related to an enhancement of information from the peripheral muscle [1] nor to the direct transmission of an efference copy from motor to sensory areas [2]. Indeed, these two processes may have been operating in the active-complex task but did not improve proprioceptive performance compared to the passive task. Furthermore, the absence of improvement in the active-simple task compared to the passive task in cerebellar patients demonstrates that the improved proprioception observed in the active-simple task in controls can be fully accounted for by a process located in the cerebro-cerebellar loop. Finally, cerebellar patients demonstrated a lower performance level than controls in the active-simple (predictable) task but not in the active-complex (non-predictable) task. Therefore the process that is most likely responsible for the improvement in proprioception is predictive modeling, which is thought to be supported by the cerebellum [3]. A recent study in mice demonstrates that individual granule cells in the cerebellum can mix proprioceptive afferents from the spinocerebellar tract and efference copy from the cerebral cortex (Huang et al., 2013). This multimodal arrangement provides the anatomical basis for converting motor corollary discharges into sensory coordinates. Indeed, granule cells can generate action potentials in response to a single input (Rancz et al., 2007). Therefore, sensory and motorrelated inputs can potentially substitute for one another to fire a granule cell. The nature of the granule cells’ output is still unknown. However, studies testing experimental phantom limbs by blocking peripheral nerves revealed conscious sensations of limb movement in the absence of any sensory input when subjects attempted to move (e.g., Gandevia et al., 2006). This result clearly supports a conversion of the efference copy from motor to sensory coordinates making proprioceptive prediction possible. So far, the literature has emphasized the role of predictive models in the control of movement where intended actions are compared with actual actions to generate error signals. However, results from Bhanpuri et al. (2013) as well as studies of phantom limbs demonstrate that the purpose of cerebellar processes is not only motor control but also proprioception per se.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Predictive modeling by the cerebellum improves proprioception.

Because sensation is delayed, real-time movement control requires not just sensing, but also predicting limb position, a function hypothesized for the cerebellum. Such cerebellar predictions could contribute to perception of limb position (i.e., proprioception), particularly when a person actively moves the limb. Here we show that human cerebellar patients have proprioceptive deficits compared ...

متن کامل

The cerebellum is not necessary for visually driven recalibration of hand proprioception.

Decades of research have implicated both cortical and subcortical areas, such as the cerebellum, as playing an important role in motor learning, and even more recently, in predicting the sensory consequences of movement. Still, it is unknown whether the cerebellum also plays a role in recalibrating sensory estimates of hand position following motor learning. To test this, we measured propriocep...

متن کامل

Evaluation of knee joint Proprioception Changes in military forces following a period of a static and dynamic stretching of hamstrings, quadriceps and Gastrocnemius muscles

Background: One of the most important factors in the proper functioning of the military is the accurate assessment of feedback. Among these, the proper knee joint Proprioception is one of the most important factors in this regard. This study was performed to Evaluation of knee joint Proprioception Changes in military forces following a period of a static and dynamic stretching of hamstrings, qu...

متن کامل

Behavioural and neural basis of anomalous motor learning in children with autism.

Autism spectrum disorder is a developmental disorder characterized by deficits in social and communication skills and repetitive and stereotyped interests and behaviours. Although not part of the diagnostic criteria, individuals with autism experience a host of motor impairments, potentially due to abnormalities in how they learn motor control throughout development. Here, we used behavioural t...

متن کامل

Behavioral and neural basis of anomalous motor learning in children with autism

Autism spectrum disorder (ASD) is a developmental disorder characterized by deficits in social and communication skills and repetitive and stereotyped interests and behaviors. Though not part of the diagnostic criteria, individuals with autism experience a host of motor impairments, potentially due to abnormalities in how they learn motor control throughout development. Here, we used behavioral...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2014