Clustering to Reduce Spatial Data Set Size
نویسنده
چکیده
Traditionally it had been a problem that researchers did not have access to enough spatial data to answer pressing research questions or build compelling visualizations. Today, however, the problem is often that we have too much data. Spatially redundant or approximately redundant points may refer to a single feature (plus noise) rather than many distinct spatial features. We can use density-based clustering to compress such spatial data into a set of representative features. This paper demonstrates how to reduce the size of a spatial data set of GPS latitude-longitude coordinates using the Python programming language and its scikitlearn implementation of the DBSCAN density-based clustering algorithm. DBSCAN works very well in low-dimension space, such as the two-dimensional feature space in this geospatial example. All of the code discussed here is available in a public repository1 along with the data.
منابع مشابه
Using Supervised Clustering Technique to Classify Received Messages in 137 Call Center of Tehran City Council
Supervised clustering is a data mining technique that assigns a set of data to predefined classes by analyzing dataset attributes. It is considered as an important technique for information retrieval, management, and mining in information systems. Since customer satisfaction is the main goal of organizations in modern society, to meet the requirements, 137 call center of Tehran city council is ...
متن کاملUsing Supervised Clustering Technique to Classify Received Messages in 137 Call Center of Tehran City Council
Supervised clustering is a data mining technique that assigns a set of data to predefined classes by analyzing dataset attributes. It is considered as an important technique for information retrieval, management, and mining in information systems. Since customer satisfaction is the main goal of organizations in modern society, to meet the requirements, 137 call center of Tehran city council is ...
متن کاملSpectral Clustering for a Large Data Set by Reducing the Similarity Matrix Size
Spectral clustering is a powerful clustering method for document data set. However, spectral clustering needs to solve an eigenvalue problem of the matrix converted from the similarity matrix corresponding to the data set. Therefore, it is not practical to use spectral clustering for a large data set. To overcome this problem, we propose the method to reduce the similarity matrix size. First, u...
متن کاملA density based clustering approach to distinguish between web robot and human requests to a web server
Today world's dependence on the Internet and the emerging of Web 2.0 applications is significantly increasing the requirement of web robots crawling the sites to support services and technologies. Regardless of the advantages of robots, they may occupy the bandwidth and reduce the performance of web servers. Despite a variety of researches, there is no accurate method for classifying huge data ...
متن کاملAccurate Fruits Fault Detection in Agricultural Goods using an Efficient Algorithm
The main purpose of this paper was to introduce an efficient algorithm for fault identification in fruits images. First, input image was de-noised using the combination of Block Matching and 3D filtering (BM3D) and Principle Component Analysis (PCA) model. Afterward, in order to reduce the size of images and increase the execution speed, refined Discrete Cosine Transform (DCT) algorithm was uti...
متن کامل