Quantum process tomography with coherent states
نویسندگان
چکیده
We have developed an enhanced technique for characterizing quantum optical processes based on probing unknown quantum processes only with coherent states. Our method substantially improves the original proposal (Lobino et al 2008 Science 322 563), which uses a filtered Glauber–Sudarshan decomposition to determine the effect of the process on an arbitrary state. We introduce a new relation between the action of a general quantum process on coherent state inputs and its action on an arbitrary quantum state. This relation eliminates the need to invoke the Glauber–Sudarshan representation for states; hence, it dramatically simplifies the task of process identification and removes a potential source of error. The new relation also enables straightforward extensions of the method to multi-mode and non-trace-preserving processes. We illustrate our formalism with several examples, in which we derive analytic representations of several fundamental quantum optical processes in the Fock basis. In particular, we introduce photon-number cutoff as a reasonable physical resource limitation and address resource versus accuracy trade-off in practical applications. We show that the accuracy of process estimation scales inversely with the square root of photon-number cutoff. 5 Author to whom any correspondence should be addressed. New Journal of Physics 13 (2011) 013006 1367-2630/11/013006+17$33.00 © IOP Publishing Ltd and Deutsche Physikalische Gesellschaft
منابع مشابه
Maximum-likelihood coherent-state quantum process tomography
Coherent-state quantum process tomography (csQPT) is a method for completely characterizing a quantum-optical ‘black box’ by probing it with coherent states and carrying out homodyne measurements on the output (Lobino et al 2008 Science 322 563). We present a technique for csQPT that is fully based on statistical inference, in particular, quantum expectation-maximization. The method relies on t...
متن کاملCoherent Transport of Single Photon in a Quantum Super-cavity with Mirrors Composed of Λ-Type Three-level Atomic Ensembles
In this paper, we study the coherent transport of single photon in a coupled resonator waveguide (CRW) where two threelevel Λ-type atomic ensembles are embedded in two separate cavities. We show that it is possible to control the photon transmission and reflection coefficients by using classical control fields. In particular, we find that the total photon transmission and reflection are achieva...
متن کاملبرهمنهی حالتهای همدوس غیرخطی روی سطح کره
In this paper, by using the nonlinear coherent states on a sphere, we introduce superposition of the aforementioned coherent states. Then, we consider quantum optical properties of these new superposed states and compare these properties with the corresponding properties of the nonlinear coherent states on the sphere. Specifically, we investigate their characteristics function, photon-number d...
متن کاملبررسی خواص کوانتومی حالتهای همدوس دومدی درهمتنیده
Coherent states are the quantum states, which give the closest description to classical states. Since their superpositions show quantum properties, research on these states has been of great interest. In addition, having nonclassical properties is necessary for quantum correlations. In this paper, we focus on two-mode entangled coherent states which are out of phase, and study the nonclassical...
متن کاملTeleportation via an Entangled Coherent Channel and Decoherence Effect on This Channel
We study an entangled two-mode coherent state within the framework of2×2-dimensional Hilbert space. We investigate the problem of quantum teleportation ofa superposition coherent state via an entangled coherent channel. By three differentmeasures with the titles ``minimum assured fidelity (MASF)”, ``average teleportationfidelity” and ``optimal fidelity (f)” we study the ...
متن کامل